1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// Written by Clark Moody and the rust-bitcoin developers.
// SPDX-License-Identifier: MIT

//! Encoding and decoding of the Bech32 format.
//!
//! Bech32 is an encoding scheme that is easy to use for humans and efficient to encode in QR codes.
//!
//! A Bech32 string consists of a human-readable part (HRP), a separator (the character `'1'`), and
//! a data part. A checksum at the end of the string provides error detection to prevent mistakes
//! when the string is written off or read out loud.
//!
//! # Usage
//!
//! - If you are doing segwit stuff you likely want to use the [`segwit`] API.
//! - Non-segwit stuff and you have an allocator, use the top level API. For normal usage the
//!   [`encode`] and [`decode`] functions should suffice. There are also various other functions for
//!   explicit control of the checksum algorithm and the case used when encoding.
//! - Non-segwit stuff and you do *not* have an allocator, use the
//!   [`primitives::decode::CheckedHrpstring`] type for decoding. For encoding we provide various
//!   top level functions of the form `encode*_to_fmt`.
//! - To define your own checksum algorithm implement [`crate::Checksum`] (see example below).
//!
//! The original description in [BIP-0173](https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki)
//! has more details. See also [BIP-0350](https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki).
//!
//! # Examples
//!
//! ## Encoding
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use bech32::{hrp, segwit, Hrp, Bech32m};
//!
//! const DATA: [u8; 20] = [0xab; 20]; // Arbitrary data to be encoded.
//! const ADDR: &str = "abc14w46h2at4w46h2at4w46h2at4w46h2at958ngu";
//! const TAP_ADDR: &str = "bc1p4w46h2at4w46h2at4w46h2at4w46h2at5kreae";
//!
//! // Encode arbitrary data using "abc" as the human-readable part and append a bech32m checksum.
//! let hrp = Hrp::parse("abc").expect("valid hrp");
//! let address = bech32::encode::<Bech32m>(hrp, &DATA).expect("failed to encode address");
//! assert_eq!(address, ADDR);
//!
//! // Encode arbitrary data as a Bitcoin taproot address.
//! let taproot_address = segwit::encode(&hrp::BC, segwit::VERSION_1, &DATA).expect("valid witness version and program");
//! assert_eq!(taproot_address, TAP_ADDR);
//!
//! // No-alloc: Encode without allocating (ignoring that String::new() allocates :).
//! let mut buf = String::new();
//! bech32::encode_to_fmt::<Bech32m, String>(&mut buf, hrp, &DATA).expect("failed to encode to buffer");
//! assert_eq!(buf, ADDR);
//! # }
//! ```
//!
//! ## Decoding
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use bech32::primitives::decode::{CheckedHrpstring, SegwitHrpstring};
//! use bech32::{hrp, segwit, Hrp, Bech32m};
//!
//! const DATA: [u8; 20] = [0xab; 20]; // Arbitrary data to be encoded.
//! const ADDR: &str = "abc14w46h2at4w46h2at4w46h2at4w46h2at958ngu";
//! const TAP_ADDR: &str = "bc1p4w46h2at4w46h2at4w46h2at4w46h2at5kreae";
//!
//! // Decode a bech32 encoded string that includes a bech32/bech32m checksum.
//! //
//! // The input address MUST include a valid bech32 or bech32m checksum, for individual specific
//! // checksum algorithms see [`decode_bech32`], [`decode_bech32m`], [`decode_no_checksum`] or use
//! // the [`primitives::decode::CheckedHrpstring`] type directly.
//! let (hrp, data) = bech32::decode(&ADDR).expect("failed to decode");
//! assert_eq!(hrp, Hrp::parse("abc").unwrap());
//! assert_eq!(data, DATA);
//!
//! // Decode a Bitcoin taproot address.
//! let (_hrp, _version, program) = segwit::decode(&TAP_ADDR).expect("valid address");
//! assert_eq!(program, DATA);
//!
//! // No-alloc: Decode a bech32m checksummed address without allocating.
//! let p = CheckedHrpstring::new::<Bech32m>(&ADDR).expect("failed to parse address");
//! assert_eq!(hrp, p.hrp());
//! assert!(p.byte_iter().eq(DATA.iter().map(|&b| b))); // We yield bytes not references.
//!
//! // No-alloc: Decode a taproot address without allocating.
//! let taproot = SegwitHrpstring::new(&TAP_ADDR).expect("valid address");
//! // Do something with the encoded data.
//! let _ = taproot.byte_iter();
//! # }
//! ```
//!
//! ## Custom Checksum
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use bech32::Checksum;
//!
//! /// The codex32 checksum algorithm, defined in BIP-93.
//! #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
//! pub enum Codex32 {}
//!
//! impl Checksum for Codex32 {
//!     type MidstateRepr = u128;
//!     const CHECKSUM_LENGTH: usize = 13;
//!     // Copied from BIP-93
//!     const GENERATOR_SH: [u128; 5] = [
//!         0x19dc500ce73fde210,
//!         0x1bfae00def77fe529,
//!         0x1fbd920fffe7bee52,
//!         0x1739640bdeee3fdad,
//!         0x07729a039cfc75f5a,
//!     ];
//!     const TARGET_RESIDUE: u128 = 0x10ce0795c2fd1e62a;
//! }
//!
//! # }
//! ```

#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
// Experimental features we need.
#![cfg_attr(bench, feature(test))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
// Coding conventions
#![deny(missing_docs)]

#[cfg(bench)]
extern crate test;

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(any(test, feature = "std"))]
extern crate core;

#[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
use alloc::{string::String, vec::Vec};
use core::fmt;

use crate::error::write_err;
#[doc(inline)]
pub use crate::primitives::checksum::Checksum;
#[cfg(doc)]
use crate::primitives::decode::CheckedHrpstring;
#[cfg(feature = "alloc")]
use crate::primitives::decode::UncheckedHrpstringError;
#[cfg(feature = "alloc")]
use crate::primitives::decode::{ChecksumError, UncheckedHrpstring};
#[doc(inline)]
pub use crate::primitives::gf32::Fe32;
#[doc(inline)]
pub use crate::primitives::hrp::Hrp;
#[doc(inline)]
pub use crate::primitives::iter::{ByteIterExt, Fe32IterExt};
#[doc(inline)]
pub use crate::primitives::{Bech32, Bech32m, NoChecksum};

mod error;
/// Re-exports the hrp types from [`primitives::hrp`] to make importing ergonomic for the top level APIs.
pub mod hrp;
/// All the primitive types and functionality used in encoding and decoding.
pub mod primitives;
/// API for encoding and decoding segwit addresses.
pub mod segwit;

/// Decodes a bech32 encoded string.
///
/// If this function succeeds the input string was found to be well formed (hrp, separator, bech32
/// characters), and to have either a valid bech32m checksum or a valid bech32 checksum.
///
/// If your input string has no checksum use the [`CheckedHrpstring`] constructor, which allows selecting the checksum algorithm explicitly.
///
/// # Returns
///
/// The human-readable part and the encoded data with the checksum removed.
///
/// # Examples
/// ```
/// # #[cfg(feature = "alloc")] {
/// use bech32::{decode, Bech32, Bech32m, NoChecksum};
/// use bech32::primitives::decode::CheckedHrpstring;
///
/// const BECH32: &str = "abc14w46h2at4w46h2at4w46h2at4w46h2atsghld7";
/// const BECH32M: &str = "abc14w46h2at4w46h2at4w46h2at4w46h2at958ngu";
/// const NO_CHECKSUM: &str = "abc14w46h2at4w46h2at4w46h2at4w46h2at";
///
/// let (hrp, data) = decode(&BECH32).expect("valid address with valid bech32 checksum");
/// let (hrp, data) = decode(&BECH32M).expect("valid address with valid bech32m checksum");
/// assert!(decode(&NO_CHECKSUM).is_err());
///
/// // You can control the checksum algorithm directly by using the [`CheckedHrpstring`] type.
/// let p = CheckedHrpstring::new::<Bech32>(&BECH32).expect("valid address with valid bech32 checksum");
/// let p = CheckedHrpstring::new::<Bech32m>(&BECH32M).expect("valid address with valid bech32 checksum");
/// let p = CheckedHrpstring::new::<NoChecksum>(&NO_CHECKSUM).expect("valid address with no checksum");
/// # }
/// ```
#[cfg(feature = "alloc")]
#[inline]
pub fn decode(s: &str) -> Result<(Hrp, Vec<u8>), DecodeError> {
    let unchecked = UncheckedHrpstring::new(s)?;

    if let Err(e) = unchecked.validate_checksum::<Bech32m>() {
        if !unchecked.has_valid_checksum::<Bech32>() {
            return Err(DecodeError::Checksum(e));
        }
    };
    // One of the checksums was valid, Ck is only for length and since
    // they are both the same we can use either here.
    let checked = unchecked.remove_checksum::<Bech32m>();

    Ok((checked.hrp(), checked.byte_iter().collect()))
}

/// Encodes `data` as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "alloc")]
#[inline]
pub fn encode<Ck: Checksum>(hrp: Hrp, data: &[u8]) -> Result<String, fmt::Error> {
    encode_lower::<Ck>(hrp, data)
}

/// Encodes `data` as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "alloc")]
#[inline]
pub fn encode_lower<Ck: Checksum>(hrp: Hrp, data: &[u8]) -> Result<String, fmt::Error> {
    let mut buf = String::new();
    encode_lower_to_fmt::<Ck, String>(&mut buf, hrp, data)?;
    Ok(buf)
}

/// Encodes `data` as an uppercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "alloc")]
#[inline]
pub fn encode_upper<Ck: Checksum>(hrp: Hrp, data: &[u8]) -> Result<String, fmt::Error> {
    let mut buf = String::new();
    encode_upper_to_fmt::<Ck, String>(&mut buf, hrp, data)?;
    Ok(buf)
}

/// Encodes `data` to a writer ([`fmt::Write`]) as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[inline]
pub fn encode_to_fmt<Ck: Checksum, W: fmt::Write>(
    fmt: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), fmt::Error> {
    encode_lower_to_fmt::<Ck, W>(fmt, hrp, data)
}

/// Encodes `data` to a writer ([`fmt::Write`]) as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[inline]
pub fn encode_lower_to_fmt<Ck: Checksum, W: fmt::Write>(
    fmt: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), fmt::Error> {
    let iter = data.iter().copied().bytes_to_fes();
    let chars = iter.with_checksum::<Ck>(&hrp).chars();
    for c in chars {
        fmt.write_char(c)?;
    }
    Ok(())
}

/// Encodes `data` to a writer ([`fmt::Write`]) as a uppercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[inline]
pub fn encode_upper_to_fmt<Ck: Checksum, W: fmt::Write>(
    fmt: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), fmt::Error> {
    let iter = data.iter().copied().bytes_to_fes();
    let chars = iter.with_checksum::<Ck>(&hrp).chars();
    for c in chars {
        fmt.write_char(c.to_ascii_uppercase())?;
    }
    Ok(())
}

/// Encodes `data` to a writer ([`std::io::Write`]) as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "std")]
#[inline]
pub fn encode_to_writer<Ck: Checksum, W: std::io::Write>(
    w: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), std::io::Error> {
    encode_lower_to_writer::<Ck, W>(w, hrp, data)
}

/// Encodes `data` to a writer ([`std::io::Write`]) as a lowercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "std")]
#[inline]
pub fn encode_lower_to_writer<Ck: Checksum, W: std::io::Write>(
    w: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), std::io::Error> {
    let iter = data.iter().copied().bytes_to_fes();
    let chars = iter.with_checksum::<Ck>(&hrp).chars();
    for c in chars {
        w.write_all(&[c as u8])?;
    }
    Ok(())
}

/// Encodes `data` to a writer ([`std::io::Write`]) as a uppercase bech32 encoded string.
///
/// Encoded string will be prefixed with the `hrp` and have a checksum appended as specified by the
/// `Ck` algorithm (`NoChecksum` to exclude checksum all together).
#[cfg(feature = "std")]
#[inline]
pub fn encode_upper_to_writer<Ck: Checksum, W: std::io::Write>(
    w: &mut W,
    hrp: Hrp,
    data: &[u8],
) -> Result<(), std::io::Error> {
    let iter = data.iter().copied().bytes_to_fes();
    let chars = iter.with_checksum::<Ck>(&hrp).chars();
    for c in chars {
        w.write_all(&[c.to_ascii_uppercase() as u8])?;
    }
    Ok(())
}

/// An error while decoding an address.
#[cfg(feature = "alloc")]
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum DecodeError {
    /// Parsing failed.
    Parse(UncheckedHrpstringError),
    /// No valid bech32 or bech32m checksum.
    Checksum(ChecksumError),
}

#[cfg(feature = "alloc")]
impl fmt::Display for DecodeError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use DecodeError::*;

        match *self {
            Parse(ref e) => write_err!(f, "parsing failed"; e),
            Checksum(ref e) => write_err!(f, "no valid bech32 or bech32m checksum"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for DecodeError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use DecodeError::*;

        match *self {
            Parse(ref e) => Some(e),
            Checksum(ref e) => Some(e),
        }
    }
}

#[cfg(feature = "alloc")]
impl From<UncheckedHrpstringError> for DecodeError {
    #[inline]
    fn from(e: UncheckedHrpstringError) -> Self { Self::Parse(e) }
}

/// An error while decoding an address from a reader.
#[cfg(feature = "std")]
#[derive(Debug)]
#[non_exhaustive]
pub enum DecodeFromReaderError {
    /// Read error.
    Read(std::io::Error),
    /// Decode error.
    Decode(DecodeError),
}

#[cfg(feature = "std")]
impl fmt::Display for DecodeFromReaderError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use DecodeFromReaderError::*;

        match *self {
            Read(ref e) => write_err!(f, "read failed"; e),
            Decode(ref e) => write_err!(f, "decoding failed"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for DecodeFromReaderError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use DecodeFromReaderError::*;

        match *self {
            Read(ref e) => Some(e),
            Decode(ref e) => Some(e),
        }
    }
}

#[cfg(feature = "std")]
impl From<std::io::Error> for DecodeFromReaderError {
    #[inline]
    fn from(e: std::io::Error) -> Self { Self::Read(e) }
}

#[cfg(feature = "std")]
impl From<DecodeError> for DecodeFromReaderError {
    #[inline]
    fn from(e: DecodeError) -> Self { Self::Decode(e) }
}

#[cfg(test)]
#[cfg(feature = "alloc")]
mod tests {
    use super::*;
    use crate::Bech32;

    // Tests below using this data, are based on the test vector (from BIP-173):
    // BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4: 0014751e76e8199196d454941c45d1b3a323f1433bd6
    #[rustfmt::skip]
    const DATA: [u8; 20] = [
        0xff, 0x1e, 0x76, 0xe8, 0x19, 0x91, 0x96, 0xd4,
        0x54, 0x94, 0x1c, 0x45, 0xd1, 0xb3, 0xa3, 0x23,
        0xf1, 0x43, 0x3b, 0xd6,
    ];

    #[test]
    fn encode_bech32m() {
        let hrp = Hrp::parse_unchecked("test");
        let got = encode::<Bech32m>(hrp, &DATA).expect("failed to encode");
        let want = "test1lu08d6qejxtdg4y5r3zarvary0c5xw7kmz4lky";
        assert_eq!(got, want);
    }

    #[test]
    fn encode_bech32_lower() {
        let hrp = Hrp::parse_unchecked("test");
        let got = encode_lower::<Bech32>(hrp, &DATA).expect("failed to encode");
        let want = "test1lu08d6qejxtdg4y5r3zarvary0c5xw7kw79nnx";
        assert_eq!(got, want);
    }

    #[test]
    #[cfg(feature = "std")]
    fn encode_bech32_lower_to_writer() {
        let hrp = Hrp::parse_unchecked("test");
        let mut buf = Vec::new();
        encode_lower_to_writer::<Bech32, _>(&mut buf, hrp, &DATA).expect("failed to encode");

        let got = std::str::from_utf8(&buf).expect("ascii is valid utf8");
        let want = "test1lu08d6qejxtdg4y5r3zarvary0c5xw7kw79nnx";
        assert_eq!(got, want);
    }

    #[test]
    fn encode_bech32_upper() {
        let hrp = Hrp::parse_unchecked("test");
        let got = encode_upper::<Bech32>(hrp, &DATA).expect("failed to encode");
        let want = "TEST1LU08D6QEJXTDG4Y5R3ZARVARY0C5XW7KW79NNX";
        assert_eq!(got, want);
    }

    #[test]
    #[cfg(feature = "std")]
    fn encode_bech32_upper_to_writer() {
        let hrp = Hrp::parse_unchecked("test");
        let mut buf = Vec::new();
        encode_upper_to_writer::<Bech32, _>(&mut buf, hrp, &DATA).expect("failed to encode");

        let got = std::str::from_utf8(&buf).expect("ascii is valid utf8");
        let want = "TEST1LU08D6QEJXTDG4Y5R3ZARVARY0C5XW7KW79NNX";
        assert_eq!(got, want);
    }

    #[test]
    fn decode_bech32m() {
        let s = "test1lu08d6qejxtdg4y5r3zarvary0c5xw7kmz4lky";
        let (hrp, data) = decode(s).expect("failed to encode");

        assert_eq!(hrp, Hrp::parse_unchecked("test"));
        assert_eq!(data, DATA);
    }

    #[test]
    fn decode_bech32_lower() {
        let s = "test1lu08d6qejxtdg4y5r3zarvary0c5xw7kw79nnx";
        let (hrp, data) = decode(s).expect("failed to encode");

        assert_eq!(hrp, Hrp::parse_unchecked("test"));
        assert_eq!(data, DATA);
    }

    #[test]
    fn decode_bech32_upper() {
        let s = "TEST1LU08D6QEJXTDG4Y5R3ZARVARY0C5XW7KW79NNX";
        let (hrp, data) = decode(s).expect("failed to encode");

        assert_eq!(hrp, Hrp::parse_unchecked("TEST"));
        assert_eq!(data, DATA);
    }
}