1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
// SPDX-License-Identifier: MIT
//! Bech32 address encoding.
//!
//! This module provides types and iterators that can be used to encode data as a bech32 address in
//! a variety of ways without any allocations, generating, verifying, and appending checksums,
//! prepending HRP strings etc.
//!
//! In general, directly using these adaptors is not very ergonomic, and users are recommended to
//! instead use the crate level API.
//!
//! WARNING: This module does not enforce the maximum length of an encoded bech32 string (90 chars).
//!
//! # Examples
//!
//! ```
//! use bech32::{Bech32, ByteIterExt, Fe32IterExt, Fe32, Hrp};
//!
//! let witness_prog = [
//! 0x75, 0x1e, 0x76, 0xe8, 0x19, 0x91, 0x96, 0xd4,
//! 0x54, 0x94, 0x1c, 0x45, 0xd1, 0xb3, 0xa3, 0x23,
//! 0xf1, 0x43, 0x3b, 0xd6,
//! ];
//!
//! // Get a stream of characters representing the bech32 encoded
//! // address using "bc" for the human-readable part.
//! let hrp = Hrp::parse("bc").expect("bc is valid hrp string");
//! let chars = witness_prog
//! .iter()
//! .copied()
//! .bytes_to_fes()
//! .with_checksum::<Bech32>(&hrp)
//! .with_witness_version(Fe32::Q) // Optionally add witness version.
//! .chars();
//!
//! #[cfg(feature = "alloc")]
//! {
//! let addr = chars.collect::<String>();
//! assert_eq!(addr.to_uppercase(), "BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4");
//! }
//! ```
use core::iter::Iterator;
use core::marker::PhantomData;
use crate::primitives::checksum::HrpFe32Iter;
use crate::primitives::hrp::{self, Hrp};
use crate::primitives::iter::Checksummed;
use crate::{Checksum, Fe32};
/// The `Encoder` builds iterators that can be used to encode field elements into a bech32 address.
///
/// Construct the encoder by calling [`Fe32IterExt::with_checksum`] on an iterator of field
/// elements, optionally prefix the data with a witness version, and then get the encoding as either
/// a stream of characters ([`Encoder::chars`]) or a stream of field elements ([`Encoder::fes`]).
///
/// # Examples
///
/// ```
/// use bech32::{Bech32, ByteIterExt, Fe32IterExt, Hrp};
///
/// let data = [0x75, 0x1e, 0x76, 0xe8, 0x19, 0x91, 0x96, 0xd4];
///
/// let hrp = Hrp::parse("abc").expect("bc is valid hrp string");
/// let chars = data
/// .iter()
/// .copied()
/// .bytes_to_fes()
/// .with_checksum::<Bech32>(&hrp)
/// .chars();
/// ```
/// [`Fe32IterExt::with_checksum`]: crate::Fe32IterExt::with_checksum
#[derive(Clone, PartialEq, Eq)]
pub struct Encoder<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// The field elements to encode.
data: I,
/// The human-readable part used at the front of the address encoding.
hrp: &'hrp Hrp,
/// The witness version, if present.
witness_version: Option<Fe32>,
/// Checksum marker.
marker: PhantomData<Ck>,
}
impl<'hrp, I, Ck> Encoder<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// Constructs a new bech32 encoder.
#[inline]
pub fn new(data: I, hrp: &'hrp Hrp) -> Self {
Self { data, hrp, witness_version: None, marker: PhantomData::<Ck> }
}
/// Adds `witness_version` to the encoder (as first byte of encoded data).
///
/// Note, caller to guarantee that witness version is within valid range (0-16).
#[inline]
pub fn with_witness_version(mut self, witness_version: Fe32) -> Self {
self.witness_version = Some(witness_version);
self
}
/// Returns an iterator that yields the bech32 encoded address as field ASCII characters.
#[inline]
pub fn chars(self) -> CharIter<'hrp, I, Ck> {
let witver_iter = WitnessVersionIter::new(self.witness_version, self.data);
CharIter::new(self.hrp, witver_iter)
}
/// Returns an iterator that yields the bech32 encoded address as field ASCII characters, as
/// byte values.
#[inline]
pub fn bytes(self) -> ByteIter<'hrp, I, Ck> {
let char_iter = self.chars();
ByteIter::new(char_iter)
}
/// Returns an iterator that yields the field elements that go into the checksum, as well as the checksum at the end.
///
/// Each field element yielded has been input into the checksum algorithm (including the HRP as it is fed into the algorithm).
#[inline]
pub fn fes(self) -> Fe32Iter<'hrp, I, Ck> {
let witver_iter = WitnessVersionIter::new(self.witness_version, self.data);
Fe32Iter::new(self.hrp, witver_iter)
}
}
/// Iterator adaptor that just prepends a single character to a field element stream.
///
/// More ergonomic to use than `std::iter::once(fe).chain(iter)`.
pub struct WitnessVersionIter<I>
where
I: Iterator<Item = Fe32>,
{
witness_version: Option<Fe32>,
iter: I,
}
impl<I> WitnessVersionIter<I>
where
I: Iterator<Item = Fe32>,
{
/// Creates a [`WitnessVersionIter`].
#[inline]
pub fn new(witness_version: Option<Fe32>, iter: I) -> Self { Self { witness_version, iter } }
}
impl<I> Iterator for WitnessVersionIter<I>
where
I: Iterator<Item = Fe32>,
{
type Item = Fe32;
#[inline]
fn next(&mut self) -> Option<Fe32> { self.witness_version.take().or_else(|| self.iter.next()) }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (min, max) = self.iter.size_hint();
match self.witness_version {
Some(_) => (min + 1, max.map(|max| max + 1)),
None => (min, max),
}
}
}
/// Iterator adaptor which takes a stream of field elements, converts it to characters prefixed by
/// an HRP (and separator), and suffixed by the checksum i.e., converts the data in a stream of
/// field elements into stream of characters representing the encoded bech32 string.
pub struct CharIter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// `None` once the hrp has been yielded.
hrp_iter: Option<hrp::LowercaseCharIter<'hrp>>,
/// Iterator over field elements made up of the optional witness version, the data to be
/// encoded, plus the checksum.
checksummed: Checksummed<WitnessVersionIter<I>, Ck>,
}
impl<'hrp, I, Ck> CharIter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// Adapts the `Fe32Iter` iterator to yield characters representing the bech32 encoding.
#[inline]
pub fn new(hrp: &'hrp Hrp, data: WitnessVersionIter<I>) -> Self {
let checksummed = Checksummed::new_hrp(*hrp, data);
Self { hrp_iter: Some(hrp.lowercase_char_iter()), checksummed }
}
}
impl<'a, I, Ck> Iterator for CharIter<'a, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
type Item = char;
#[inline]
fn next(&mut self) -> Option<char> {
if let Some(ref mut hrp_iter) = self.hrp_iter {
match hrp_iter.next() {
Some(c) => return Some(c),
None => {
self.hrp_iter = None;
return Some('1');
}
}
}
self.checksummed.next().map(|fe| fe.to_char())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.hrp_iter {
// We have yielded the hrp and separator already.
None => self.checksummed.size_hint(),
// Yet to finish yielding the hrp (and the separator).
Some(hrp_iter) => {
let (hrp_min, hrp_max) = hrp_iter.size_hint();
let (chk_min, chk_max) = self.checksummed.size_hint();
let min = hrp_min + 1 + chk_min; // +1 for the separator.
// To provide a max boundary we need to have gotten a value from the hrp iter as well as the
// checksummed iter, otherwise we have to return None since we cannot know the maximum.
let max = match (hrp_max, chk_max) {
(Some(hrp_max), Some(chk_max)) => Some(hrp_max + 1 + chk_max),
(_, _) => None,
};
(min, max)
}
}
}
}
/// Iterator adaptor which takes a stream of ASCII field elements (an encoded string) and yields a stream of bytes.
///
/// This is equivalent to using the `CharsIter` and the casting each character to a byte. Doing
/// so is technically sound because we only yield ASCII characters but it makes for ugly code so
/// we provide this iterator also.
pub struct ByteIter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
char_iter: CharIter<'hrp, I, Ck>,
}
impl<'hrp, I, Ck> ByteIter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// Adapts the `CharIter` iterator to yield bytes representing the bech32 encoding as ASCII bytes.
#[inline]
pub fn new(char_iter: CharIter<'hrp, I, Ck>) -> Self { Self { char_iter } }
}
impl<'a, I, Ck> Iterator for ByteIter<'a, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> { self.char_iter.next().map(|c| c as u8) }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.char_iter.size_hint() }
}
/// Iterator adaptor for a checksummed iterator that inputs the HRP into the checksum algorithm
/// before yielding the HRP as field elements followed by the data then checksum.
pub struct Fe32Iter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// `None` once the hrp field elements have been yielded.
hrp_iter: Option<HrpFe32Iter<'hrp>>,
/// Iterator over field elements made up of the optional witness version, the data to be
/// encoded, plus the checksum.
checksummed: Checksummed<WitnessVersionIter<I>, Ck>,
}
impl<'hrp, I, Ck> Fe32Iter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
/// Creates a [`Fe32Iter`] which yields all the field elements which go into the checksum algorithm.
#[inline]
pub fn new(hrp: &'hrp Hrp, data: WitnessVersionIter<I>) -> Self {
let hrp_iter = HrpFe32Iter::new(hrp);
let checksummed = Checksummed::new_hrp(*hrp, data);
Self { hrp_iter: Some(hrp_iter), checksummed }
}
}
impl<'hrp, I, Ck> Iterator for Fe32Iter<'hrp, I, Ck>
where
I: Iterator<Item = Fe32>,
Ck: Checksum,
{
type Item = Fe32;
#[inline]
fn next(&mut self) -> Option<Fe32> {
if let Some(ref mut hrp_iter) = &mut self.hrp_iter {
match hrp_iter.next() {
Some(fe) => return Some(fe),
None => self.hrp_iter = None,
}
}
self.checksummed.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let hrp = match &self.hrp_iter {
Some(hrp_iter) => hrp_iter.size_hint(),
None => (0, Some(0)),
};
let data = self.checksummed.size_hint();
let min = hrp.0 + data.0;
let max = hrp.1.zip(data.1).map(|(hrp, data)| hrp + data);
(min, max)
}
}
#[cfg(test)]
mod tests {
use crate::{Bech32, ByteIterExt, Fe32, Fe32IterExt, Hrp};
// Tests below using this data, are based on the test vector (from BIP-173):
// BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4: 0014751e76e8199196d454941c45d1b3a323f1433bd6
#[rustfmt::skip]
const DATA: [u8; 20] = [
0x75, 0x1e, 0x76, 0xe8, 0x19, 0x91, 0x96, 0xd4,
0x54, 0x94, 0x1c, 0x45, 0xd1, 0xb3, 0xa3, 0x23,
0xf1, 0x43, 0x3b, 0xd6,
];
#[test]
fn hrpstring_iter() {
let iter = DATA.iter().copied().bytes_to_fes();
let hrp = Hrp::parse_unchecked("bc");
let iter = iter.with_checksum::<Bech32>(&hrp).with_witness_version(Fe32::Q).chars();
assert!(iter.eq("bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4".chars()));
}
#[test]
#[cfg(feature = "alloc")]
fn hrpstring_iter_collect() {
let iter = DATA.iter().copied().bytes_to_fes();
let hrp = Hrp::parse_unchecked("bc");
let iter = iter.with_checksum::<Bech32>(&hrp).with_witness_version(Fe32::Q).chars();
let encoded = iter.collect::<String>();
assert_eq!(encoded, "bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4");
}
#[test]
fn hrpstring_iter_size_hint() {
let char_len = "w508d6qejxtdg4y5r3zarvary0c5xw7k".len();
let iter = DATA.iter().copied().bytes_to_fes();
let hrp = Hrp::parse_unchecked("bc");
let iter = iter.with_checksum::<Bech32>(&hrp).with_witness_version(Fe32::Q).chars();
let checksummed_len = 2 + 1 + 1 + char_len + 6; // bc + SEP + Q + chars + checksum
assert_eq!(iter.size_hint().0, checksummed_len);
}
#[test]
#[cfg(feature = "alloc")]
fn hrpstring_iter_bytes() {
let hrp = Hrp::parse_unchecked("bc");
let fes = DATA.iter().copied().bytes_to_fes();
let iter = fes.with_checksum::<Bech32>(&hrp).with_witness_version(Fe32::Q);
let chars = iter.clone().chars();
let bytes = iter.bytes();
for (c, b) in chars.zip(bytes) {
assert_eq!(c as u8, b)
}
}
}