1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
// SPDX-License-Identifier: CC0-1.0
use core::convert::{TryFrom, TryInto};
use core::fmt;
#[cfg(rust_v_1_53)]
use core::ops::Bound;
use core::ops::{Index, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive};
use hashes::Hash;
use secp256k1::{Secp256k1, Verification};
use super::PushBytes;
use crate::blockdata::opcodes::all::*;
use crate::blockdata::opcodes::{self, Opcode};
use crate::blockdata::script::witness_version::WitnessVersion;
use crate::blockdata::script::{
bytes_to_asm_fmt, Builder, Instruction, InstructionIndices, Instructions, ScriptBuf,
ScriptHash, WScriptHash,
};
use crate::consensus::Encodable;
use crate::key::{PublicKey, UntweakedPublicKey};
use crate::policy::DUST_RELAY_TX_FEE;
use crate::prelude::*;
use crate::taproot::{LeafVersion, TapLeafHash, TapNodeHash};
/// Bitcoin script slice.
///
/// *[See also the `bitcoin::blockdata::script` module](crate::blockdata::script).*
///
/// `Script` is a script slice, the most primitive script type. It's usually seen in its borrowed
/// form `&Script`. It is always encoded as a series of bytes representing the opcodes and data
/// pushes.
///
/// ## Validity
///
/// `Script` does not have any validity invariants - it's essentially just a marked slice of
/// bytes. This is similar to [`Path`](std::path::Path) vs [`OsStr`](std::ffi::OsStr) where they
/// are trivially cast-able to each-other and `Path` doesn't guarantee being a usable FS path but
/// having a newtype still has value because of added methods, readability and basic type checking.
///
/// Although at least data pushes could be checked not to overflow the script, bad scripts are
/// allowed to be in a transaction (outputs just become unspendable) and there even are such
/// transactions in the chain. Thus we must allow such scripts to be placed in the transaction.
///
/// ## Slicing safety
///
/// Slicing is similar to how `str` works: some ranges may be incorrect and indexing by
/// `usize` is not supported. However, as opposed to `std`, we have no way of checking
/// correctness without causing linear complexity so there are **no panics on invalid
/// ranges!** If you supply an invalid range, you'll get a garbled script.
///
/// The range is considered valid if it's at a boundary of instruction. Care must be taken
/// especially with push operations because you could get a reference to arbitrary
/// attacker-supplied bytes that look like a valid script.
///
/// It is recommended to use `.instructions()` method to get an iterator over script
/// instructions and work with that instead.
///
/// ## Memory safety
///
/// The type is `#[repr(transparent)]` for internal purposes only!
/// No consumer crate may rely on the represenation of the struct!
///
/// ## References
///
///
/// ### Bitcoin Core References
///
/// * [CScript definition](https://github.com/bitcoin/bitcoin/blob/d492dc1cdaabdc52b0766bf4cba4bd73178325d0/src/script/script.h#L410)
///
#[derive(PartialOrd, Ord, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct Script(pub(in crate::blockdata::script) [u8]);
impl ToOwned for Script {
type Owned = ScriptBuf;
fn to_owned(&self) -> Self::Owned { ScriptBuf(self.0.to_owned()) }
}
impl Script {
/// Creates a new empty script.
#[inline]
pub fn new() -> &'static Script { Script::from_bytes(&[]) }
/// Treat byte slice as `Script`
#[inline]
pub fn from_bytes(bytes: &[u8]) -> &Script {
// SAFETY: copied from `std`
// The pointer was just created from a reference which is still alive.
// Casting slice pointer to a transparent struct wrapping that slice is sound (same
// layout).
unsafe { &*(bytes as *const [u8] as *const Script) }
}
/// Treat mutable byte slice as `Script`
#[inline]
pub fn from_bytes_mut(bytes: &mut [u8]) -> &mut Script {
// SAFETY: copied from `std`
// The pointer was just created from a reference which is still alive.
// Casting slice pointer to a transparent struct wrapping that slice is sound (same
// layout).
// Function signature prevents callers from accessing `bytes` while the returned reference
// is alive.
unsafe { &mut *(bytes as *mut [u8] as *mut Script) }
}
/// Returns the script data as a byte slice.
#[inline]
pub fn as_bytes(&self) -> &[u8] { &self.0 }
/// Returns the script data as a mutable byte slice.
#[inline]
pub fn as_mut_bytes(&mut self) -> &mut [u8] { &mut self.0 }
/// Creates a new script builder
pub fn builder() -> Builder { Builder::new() }
/// Returns 160-bit hash of the script.
#[inline]
pub fn script_hash(&self) -> ScriptHash { ScriptHash::hash(self.as_bytes()) }
/// Returns 256-bit hash of the script for P2WSH outputs.
#[inline]
pub fn wscript_hash(&self) -> WScriptHash { WScriptHash::hash(self.as_bytes()) }
/// Computes leaf hash of tapscript.
#[inline]
pub fn tapscript_leaf_hash(&self) -> TapLeafHash {
TapLeafHash::from_script(self, LeafVersion::TapScript)
}
/// Returns the length in bytes of the script.
#[inline]
pub fn len(&self) -> usize { self.0.len() }
/// Returns whether the script is the empty script.
#[inline]
pub fn is_empty(&self) -> bool { self.0.is_empty() }
/// Returns a copy of the script data.
#[inline]
pub fn to_bytes(&self) -> Vec<u8> { self.0.to_owned() }
/// Returns an iterator over script bytes.
#[inline]
pub fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) }
/// Computes the P2WSH output corresponding to this witnessScript (aka the "witness redeem
/// script").
#[inline]
#[deprecated(since = "0.31.0", note = "use to_p2wsh instead")]
pub fn to_v0_p2wsh(&self) -> ScriptBuf { self.to_p2wsh() }
/// Computes the P2WSH output corresponding to this witnessScript (aka the "witness redeem
/// script").
#[inline]
pub fn to_p2wsh(&self) -> ScriptBuf { ScriptBuf::new_p2wsh(&self.wscript_hash()) }
/// Computes P2TR output with a given internal key and a single script spending path equal to
/// the current script, assuming that the script is a Tapscript.
#[inline]
#[deprecated(since = "0.31.0", note = "use to_p2tr instead")]
pub fn to_v1_p2tr<C: Verification>(
&self,
secp: &Secp256k1<C>,
internal_key: UntweakedPublicKey,
) -> ScriptBuf {
self.to_p2tr(secp, internal_key)
}
/// Computes P2TR output with a given internal key and a single script spending path equal to
/// the current script, assuming that the script is a Tapscript.
#[inline]
pub fn to_p2tr<C: Verification>(
&self,
secp: &Secp256k1<C>,
internal_key: UntweakedPublicKey,
) -> ScriptBuf {
let leaf_hash = self.tapscript_leaf_hash();
let merkle_root = TapNodeHash::from(leaf_hash);
ScriptBuf::new_p2tr(secp, internal_key, Some(merkle_root))
}
/// Returns witness version of the script, if any, assuming the script is a `scriptPubkey`.
#[inline]
pub fn witness_version(&self) -> Option<WitnessVersion> {
self.0.first().and_then(|opcode| WitnessVersion::try_from(Opcode::from(*opcode)).ok())
}
/// Checks whether a script pubkey is a P2SH output.
#[inline]
pub fn is_p2sh(&self) -> bool {
self.0.len() == 23
&& self.0[0] == OP_HASH160.to_u8()
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
&& self.0[22] == OP_EQUAL.to_u8()
}
/// Checks whether a script pubkey is a P2PKH output.
#[inline]
pub fn is_p2pkh(&self) -> bool {
self.0.len() == 25
&& self.0[0] == OP_DUP.to_u8()
&& self.0[1] == OP_HASH160.to_u8()
&& self.0[2] == OP_PUSHBYTES_20.to_u8()
&& self.0[23] == OP_EQUALVERIFY.to_u8()
&& self.0[24] == OP_CHECKSIG.to_u8()
}
/// Checks whether a script is push only.
///
/// Note: `OP_RESERVED` (`0x50`) and all the OP_PUSHNUM operations
/// are considered push operations.
#[inline]
pub fn is_push_only(&self) -> bool {
for inst in self.instructions() {
match inst {
Err(_) => return false,
Ok(Instruction::PushBytes(_)) => {}
Ok(Instruction::Op(op)) if op.to_u8() <= 0x60 => {}
// From Bitcoin Core
// if (opcode > OP_PUSHNUM_16 (0x60)) return false
Ok(Instruction::Op(_)) => return false,
}
}
true
}
/// Checks whether a script pubkey is a P2PK output.
///
/// You can obtain the public key, if its valid,
/// by calling [`p2pk_public_key()`](Self::p2pk_public_key)
#[inline]
pub fn is_p2pk(&self) -> bool { self.p2pk_pubkey_bytes().is_some() }
/// Returns the public key if this script is P2PK with a **valid** public key.
///
/// This may return `None` even when [`is_p2pk()`](Self::is_p2pk) returns true.
/// This happens when the public key is invalid (e.g. the point not being on the curve).
/// It also implies the script is unspendable.
#[inline]
pub fn p2pk_public_key(&self) -> Option<PublicKey> {
PublicKey::from_slice(self.p2pk_pubkey_bytes()?).ok()
}
/// Returns the bytes of the (possibly invalid) public key if this script is P2PK.
#[inline]
pub(in crate::blockdata::script) fn p2pk_pubkey_bytes(&self) -> Option<&[u8]> {
match self.len() {
67 if self.0[0] == OP_PUSHBYTES_65.to_u8() && self.0[66] == OP_CHECKSIG.to_u8() =>
Some(&self.0[1..66]),
35 if self.0[0] == OP_PUSHBYTES_33.to_u8() && self.0[34] == OP_CHECKSIG.to_u8() =>
Some(&self.0[1..34]),
_ => None,
}
}
/// Checks whether a script pubkey is a bare multisig output.
///
/// In a bare multisig pubkey script the keys are not hashed, the script
/// is of the form:
///
/// `2 <pubkey1> <pubkey2> <pubkey3> 3 OP_CHECKMULTISIG`
#[inline]
pub fn is_multisig(&self) -> bool {
let required_sigs;
let mut instructions = self.instructions();
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if let Some(pushnum) = op.decode_pushnum() {
required_sigs = pushnum;
} else {
return false;
}
} else {
return false;
}
let mut num_pubkeys: u8 = 0;
while let Some(Ok(instruction)) = instructions.next() {
match instruction {
Instruction::PushBytes(_) => {
num_pubkeys += 1;
}
Instruction::Op(op) => {
if let Some(pushnum) = op.decode_pushnum() {
if pushnum != num_pubkeys {
return false;
}
}
break;
}
}
}
if required_sigs > num_pubkeys {
return false;
}
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if op != OP_CHECKMULTISIG {
return false;
}
} else {
return false;
}
instructions.next().is_none()
}
/// Checks whether a script pubkey is a Segregated Witness (segwit) program.
#[inline]
pub fn is_witness_program(&self) -> bool {
// A scriptPubKey (or redeemScript as defined in BIP16/P2SH) that consists of a 1-byte
// push opcode (for 0 to 16) followed by a data push between 2 and 40 bytes gets a new
// special meaning. The value of the first push is called the "version byte". The following
// byte vector pushed is called the "witness program".
let script_len = self.0.len();
if !(4..=42).contains(&script_len) {
return false;
}
let ver_opcode = Opcode::from(self.0[0]); // Version 0 or PUSHNUM_1-PUSHNUM_16
let push_opbyte = self.0[1]; // Second byte push opcode 2-40 bytes
WitnessVersion::try_from(ver_opcode).is_ok()
&& push_opbyte >= OP_PUSHBYTES_2.to_u8()
&& push_opbyte <= OP_PUSHBYTES_40.to_u8()
// Check that the rest of the script has the correct size
&& script_len - 2 == push_opbyte as usize
}
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
#[deprecated(since = "0.31.0", note = "use is_p2wsh instead")]
pub fn is_v0_p2wsh(&self) -> bool { self.is_p2wsh() }
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
pub fn is_p2wsh(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
#[deprecated(since = "0.31.0", note = "use is_p2wpkh instead")]
pub fn is_v0_p2wpkh(&self) -> bool { self.is_p2wpkh() }
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
pub fn is_p2wpkh(&self) -> bool {
self.0.len() == 22
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
}
pub(crate) fn p2wpkh(&self) -> Option<&[u8; 20]> {
if self.is_p2wpkh() {
Some(self.0[2..].try_into().expect("is_v0_p2wpkh checks the length"))
} else {
None
}
}
/// Checks whether a script pubkey is a P2TR output.
#[inline]
#[deprecated(since = "0.31.0", note = "use is_p2tr instead")]
pub fn is_v1_p2tr(&self) -> bool { self.is_p2tr() }
/// Checks whether a script pubkey is a P2TR output.
#[inline]
pub fn is_p2tr(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V1)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Check if this is an OP_RETURN output.
#[inline]
pub fn is_op_return(&self) -> bool {
match self.0.first() {
Some(b) => *b == OP_RETURN.to_u8(),
None => false,
}
}
/// Checks whether a script can be proven to have no satisfying input.
#[inline]
pub fn is_provably_unspendable(&self) -> bool {
use crate::blockdata::opcodes::Class::{IllegalOp, ReturnOp};
match self.0.first() {
Some(b) => {
let first = Opcode::from(*b);
let class = first.classify(opcodes::ClassifyContext::Legacy);
class == ReturnOp || class == IllegalOp
}
None => false,
}
}
/// Computes the P2SH output corresponding to this redeem script.
pub fn to_p2sh(&self) -> ScriptBuf { ScriptBuf::new_p2sh(&self.script_hash()) }
/// Returns the script code used for spending a P2WPKH output if this script is a script pubkey
/// for a P2WPKH output. The `scriptCode` is described in [BIP143].
///
/// [BIP143]: <https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki>
pub fn p2wpkh_script_code(&self) -> Option<ScriptBuf> {
self.p2wpkh().map(|wpkh| {
Builder::new()
.push_opcode(OP_DUP)
.push_opcode(OP_HASH160)
// The `self` script is 0x00, 0x14, <pubkey_hash>
.push_slice(wpkh)
.push_opcode(OP_EQUALVERIFY)
.push_opcode(OP_CHECKSIG)
.into_script()
})
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
pub fn dust_value(&self) -> crate::Amount {
// This must never be lower than Bitcoin Core's GetDustThreshold() (as of v0.21) as it may
// otherwise allow users to create transactions which likely can never be broadcast/confirmed.
let sats = DUST_RELAY_TX_FEE as u64 / 1000 * // The default dust relay fee is 3000 satoshi/kB (i.e. 3 sat/vByte)
if self.is_op_return() {
0
} else if self.is_witness_program() {
32 + 4 + 1 + (107 / 4) + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error") as u64 // The serialized size of this script_pubkey
} else {
32 + 4 + 1 + 107 + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error") as u64 // The serialized size of this script_pubkey
};
crate::Amount::from_sat(sats)
}
/// Counts the sigops for this Script using accurate counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "accurate" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for N sigops where N is the number of pubkeys used in the
/// multisig. However, it will count for 20 sigops if CHECKMULTISIG is not preceeded by an
/// OP_PUSHNUM from 1 - 16 (this would be an invalid script)
///
/// Bitcoin Core uses accurate counting for sigops contained within redeemScripts (P2SH)
/// and witnessScripts (P2WSH) only. It uses legacy for sigops in scriptSigs and scriptPubkeys.
///
/// (Note: taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a taproot script goes over the sigop budget.)
pub fn count_sigops(&self) -> usize { self.count_sigops_internal(true) }
/// Counts the sigops for this Script using legacy counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "legacy" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for 20 sigops.
///
/// Bitcoin Core uses legacy counting for sigops contained within scriptSigs and
/// scriptPubkeys. It uses accurate for redeemScripts (P2SH) and witnessScripts (P2WSH).
///
/// (Note: taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a taproot script goes over the sigop budget.)
pub fn count_sigops_legacy(&self) -> usize { self.count_sigops_internal(false) }
fn count_sigops_internal(&self, accurate: bool) -> usize {
let mut n = 0;
let mut pushnum_cache = None;
for inst in self.instructions() {
match inst {
Ok(Instruction::Op(opcode)) => {
match opcode {
// p2pk, p2pkh
OP_CHECKSIG | OP_CHECKSIGVERIFY => {
n += 1;
}
OP_CHECKMULTISIG | OP_CHECKMULTISIGVERIFY => {
match (accurate, pushnum_cache) {
(true, Some(pushnum)) => {
// Add the number of pubkeys in the multisig as sigop count
n += usize::from(pushnum);
}
_ => {
// MAX_PUBKEYS_PER_MULTISIG from Bitcoin Core
// https://github.com/bitcoin/bitcoin/blob/v25.0/src/script/script.h#L29-L30
n += 20;
}
}
}
_ => {
pushnum_cache = opcode.decode_pushnum();
}
}
}
Ok(Instruction::PushBytes(_)) => {
pushnum_cache = None;
}
// In Bitcoin Core it does `if (!GetOp(pc, opcode)) break;`
Err(_) => break,
}
}
n
}
/// Iterates over the script instructions.
///
/// Each returned item is a nested enum covering opcodes, datapushes and errors.
/// At most one error will be returned and then the iterator will end. To instead iterate over
/// the script as sequence of bytes call the [`bytes`](Self::bytes) method.
///
/// To force minimal pushes, use [`instructions_minimal`](Self::instructions_minimal).
#[inline]
pub fn instructions(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: false }
}
/// Iterates over the script instructions while enforcing minimal pushes.
///
/// This is similar to [`instructions`](Self::instructions) but an error is returned if a push
/// is not minimal.
#[inline]
pub fn instructions_minimal(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: true }
}
/// Iterates over the script instructions and their indices.
///
/// Unless the script contains an error, the returned item consists of an index pointing to the
/// position in the script where the instruction begins and the decoded instruction - either an
/// opcode or data push.
///
/// To force minimal pushes, use [`Self::instruction_indices_minimal`].
#[inline]
pub fn instruction_indices(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions())
}
/// Iterates over the script instructions and their indices while enforcing minimal pushes.
///
/// This is similar to [`instruction_indices`](Self::instruction_indices) but an error is
/// returned if a push is not minimal.
#[inline]
pub fn instruction_indices_minimal(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions_minimal())
}
/// Writes the assembly decoding of the script to the formatter.
pub fn fmt_asm(&self, f: &mut dyn fmt::Write) -> fmt::Result {
bytes_to_asm_fmt(self.as_ref(), f)
}
/// Returns the assembly decoding of the script.
pub fn to_asm_string(&self) -> String {
let mut buf = String::new();
self.fmt_asm(&mut buf).unwrap();
buf
}
/// Formats the script as lower-case hex.
///
/// This is a more convenient and performant way to write `format!("{:x}", script)`.
/// For better performance you should generally prefer displaying the script but if `String` is
/// required (this is common in tests) this method is can be used.
pub fn to_hex_string(&self) -> String { self.as_bytes().to_lower_hex_string() }
/// Returns the first opcode of the script (if there is any).
pub fn first_opcode(&self) -> Option<Opcode> {
self.as_bytes().first().copied().map(From::from)
}
/// Iterates the script to find the last opcode.
///
/// Returns `None` is the instruction is data push or if the script is empty.
pub(in crate::blockdata::script) fn last_opcode(&self) -> Option<Opcode> {
match self.instructions().last() {
Some(Ok(Instruction::Op(op))) => Some(op),
_ => None,
}
}
/// Iterates the script to find the last pushdata.
///
/// Returns `None` if the instruction is an opcode or if the script is empty.
pub(crate) fn last_pushdata(&self) -> Option<Push> {
match self.instructions().last() {
// Handles op codes up to (but excluding) OP_PUSHNUM_NEG.
Some(Ok(Instruction::PushBytes(bytes))) => Some(Push::Data(bytes)),
// OP_16 (0x60) and lower are considered "pushes" by Bitcoin Core (excl. OP_RESERVED).
// By here we know that op is between OP_PUSHNUM_NEG AND OP_PUSHNUM_16 inclusive.
Some(Ok(Instruction::Op(op))) if op.to_u8() <= 0x60 => {
if op == OP_PUSHNUM_NEG1 {
Some(Push::Num(-1))
} else if op == OP_RESERVED {
Some(Push::Reserved)
} else {
let num = (op.to_u8() - 0x50) as i8; // cast ok, num is [1, 16].
Some(Push::Num(num))
}
}
_ => None,
}
}
/// Converts a [`Box<Script>`](Box) into a [`ScriptBuf`] without copying or allocating.
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_script_buf(self: Box<Self>) -> ScriptBuf {
let rw = Box::into_raw(self) as *mut [u8];
// SAFETY: copied from `std`
// The pointer was just created from a box without deallocating
// Casting a transparent struct wrapping a slice to the slice pointer is sound (same
// layout).
let inner = unsafe { Box::from_raw(rw) };
ScriptBuf(Vec::from(inner))
}
}
/// Data pushed by "push" opcodes.
///
/// "push" opcodes are defined by Bitcoin Core as OP_PUSHBYTES_, OP_PUSHDATA, OP_PUSHNUM_, and
/// OP_RESERVED i.e., everything less than OP_PUSHNUM_16 (0x60) . (TODO: Add link to core code).
pub(crate) enum Push<'a> {
/// All the OP_PUSHBYTES_ and OP_PUSHDATA_ opcodes.
Data(&'a PushBytes),
/// All the OP_PUSHNUM_ opcodes (-1, 1, 2, .., 16)
Num(i8),
/// OP_RESERVED
Reserved,
}
/// Iterator over bytes of a script
pub struct Bytes<'a>(core::iter::Copied<core::slice::Iter<'a, u8>>);
impl Iterator for Bytes<'_> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<Self::Item> { self.0.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.0.size_hint() }
#[inline]
fn nth(&mut self, n: usize) -> Option<Self::Item> { self.0.nth(n) }
}
impl DoubleEndedIterator for Bytes<'_> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> { self.0.next_back() }
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> { self.0.nth_back(n) }
}
impl ExactSizeIterator for Bytes<'_> {}
impl core::iter::FusedIterator for Bytes<'_> {}
macro_rules! delegate_index {
($($type:ty),* $(,)?) => {
$(
/// Script subslicing operation - read [slicing safety](#slicing-safety)!
impl Index<$type> for Script {
type Output = Self;
#[inline]
fn index(&self, index: $type) -> &Self::Output {
Self::from_bytes(&self.0[index])
}
}
)*
}
}
delegate_index!(
Range<usize>,
RangeFrom<usize>,
RangeTo<usize>,
RangeFull,
RangeInclusive<usize>,
RangeToInclusive<usize>
);
#[cfg(rust_v_1_53)]
delegate_index!((Bound<usize>, Bound<usize>));