1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
// SPDX-License-Identifier: CC0-1.0

//! Witness
//!
//! This module contains the [`Witness`] struct and related methods to operate on it
//!

use core::fmt;
use core::ops::Index;

use io::{Read, Write};

use crate::consensus::encode::{Error, MAX_VEC_SIZE};
use crate::consensus::{Decodable, Encodable, WriteExt};
use crate::crypto::ecdsa;
use crate::prelude::*;
use crate::taproot::{self, TAPROOT_ANNEX_PREFIX};
use crate::{Script, VarInt};

/// The Witness is the data used to unlock bitcoin since the [segwit upgrade].
///
/// Can be logically seen as an array of bytestrings, i.e. `Vec<Vec<u8>>`, and it is serialized on the wire
/// in that format. You can convert between this type and `Vec<Vec<u8>>` by using [`Witness::from_slice`]
/// and [`Witness::to_vec`].
///
/// For serialization and deserialization performance it is stored internally as a single `Vec`,
/// saving some allocations.
///
/// [segwit upgrade]: <https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki>
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Witness {
    /// Contains the witness `Vec<Vec<u8>>` serialization without the initial varint indicating the
    /// number of elements (which is stored in `witness_elements`).
    content: Vec<u8>,

    /// The number of elements in the witness.
    ///
    /// Stored separately (instead of as a VarInt in the initial part of content) so that methods
    /// like [`Witness::push`] don't have to shift the entire array.
    witness_elements: usize,

    /// This is the valid index pointing to the beginning of the index area. This area is 4 *
    /// stack_size bytes at the end of the content vector which stores the indices of each item.
    indices_start: usize,
}

impl fmt::Debug for Witness {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        if f.alternate() {
            fmt_debug_pretty(self, f)
        } else {
            fmt_debug(self, f)
        }
    }
}

fn fmt_debug(w: &Witness, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
    #[rustfmt::skip]
    let comma_or_close = |current_index, last_index| {
        if current_index == last_index { "]" } else { ", " }
    };

    f.write_str("Witness: { ")?;
    write!(f, "indices: {}, ", w.witness_elements)?;
    write!(f, "indices_start: {}, ", w.indices_start)?;
    f.write_str("witnesses: [")?;

    let instructions = w.iter();
    match instructions.len().checked_sub(1) {
        Some(last_instruction) => {
            for (i, instruction) in instructions.enumerate() {
                let bytes = instruction.iter();
                match bytes.len().checked_sub(1) {
                    Some(last_byte) => {
                        f.write_str("[")?;
                        for (j, byte) in bytes.enumerate() {
                            write!(f, "{:#04x}", byte)?;
                            f.write_str(comma_or_close(j, last_byte))?;
                        }
                    }
                    None => {
                        // This is possible because the varint is not part of the instruction (see Iter).
                        write!(f, "[]")?;
                    }
                }
                f.write_str(comma_or_close(i, last_instruction))?;
            }
        }
        None => {
            // Witnesses can be empty because the 0x00 var int is not stored in content.
            write!(f, "]")?;
        }
    }

    f.write_str(" }")
}

fn fmt_debug_pretty(w: &Witness, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
    f.write_str("Witness: {\n")?;
    writeln!(f, "    indices: {},", w.witness_elements)?;
    writeln!(f, "    indices_start: {},", w.indices_start)?;
    f.write_str("    witnesses: [\n")?;

    for instruction in w.iter() {
        f.write_str("        [")?;
        for (j, byte) in instruction.iter().enumerate() {
            if j > 0 {
                f.write_str(", ")?;
            }
            write!(f, "{:#04x}", byte)?;
        }
        f.write_str("],\n")?;
    }

    writeln!(f, "    ],")?;
    writeln!(f, "}}")
}

/// An iterator returning individual witness elements.
pub struct Iter<'a> {
    inner: &'a [u8],
    indices_start: usize,
    current_index: usize,
}

impl Decodable for Witness {
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        let witness_elements = VarInt::consensus_decode(r)?.0 as usize;
        // Minimum size of witness element is 1 byte, so if the count is
        // greater than MAX_VEC_SIZE we must return an error.
        if witness_elements > MAX_VEC_SIZE {
            return Err(self::Error::OversizedVectorAllocation {
                requested: witness_elements,
                max: MAX_VEC_SIZE,
            });
        }
        if witness_elements == 0 {
            Ok(Witness::default())
        } else {
            // Leave space at the head for element positions.
            // We will rotate them to the end of the Vec later.
            let witness_index_space = witness_elements * 4;
            let mut cursor = witness_index_space;

            // this number should be determined as high enough to cover most witness, and low enough
            // to avoid wasting space without reallocating
            let mut content = vec![0u8; cursor + 128];

            for i in 0..witness_elements {
                let element_size_varint = VarInt::consensus_decode(r)?;
                let element_size_varint_len = element_size_varint.size();
                let element_size = element_size_varint.0 as usize;
                let required_len = cursor
                    .checked_add(element_size)
                    .ok_or(self::Error::OversizedVectorAllocation {
                        requested: usize::MAX,
                        max: MAX_VEC_SIZE,
                    })?
                    .checked_add(element_size_varint_len)
                    .ok_or(self::Error::OversizedVectorAllocation {
                        requested: usize::MAX,
                        max: MAX_VEC_SIZE,
                    })?;

                if required_len > MAX_VEC_SIZE + witness_index_space {
                    return Err(self::Error::OversizedVectorAllocation {
                        requested: required_len,
                        max: MAX_VEC_SIZE,
                    });
                }

                // We will do content.rotate_left(witness_index_space) later.
                // Encode the position's value AFTER we rotate left.
                encode_cursor(&mut content, 0, i, cursor - witness_index_space);

                resize_if_needed(&mut content, required_len);
                element_size_varint.consensus_encode(
                    &mut &mut content[cursor..cursor + element_size_varint_len],
                )?;
                cursor += element_size_varint_len;
                r.read_exact(&mut content[cursor..cursor + element_size])?;
                cursor += element_size;
            }
            content.truncate(cursor);
            // Index space is now at the end of the Vec
            content.rotate_left(witness_index_space);
            Ok(Witness { content, witness_elements, indices_start: cursor - witness_index_space })
        }
    }
}

/// Correctness Requirements: value must always fit within u32
#[inline]
fn encode_cursor(bytes: &mut [u8], start_of_indices: usize, index: usize, value: usize) {
    let start = start_of_indices + index * 4;
    let end = start + 4;
    bytes[start..end]
        .copy_from_slice(&u32::to_ne_bytes(value.try_into().expect("Larger than u32")));
}

#[inline]
fn decode_cursor(bytes: &[u8], start_of_indices: usize, index: usize) -> Option<usize> {
    let start = start_of_indices + index * 4;
    let end = start + 4;
    if end > bytes.len() {
        None
    } else {
        Some(u32::from_ne_bytes(bytes[start..end].try_into().expect("is u32 size")) as usize)
    }
}

fn resize_if_needed(vec: &mut Vec<u8>, required_len: usize) {
    if required_len >= vec.len() {
        let mut new_len = vec.len().max(1);
        while new_len <= required_len {
            new_len *= 2;
        }
        vec.resize(new_len, 0);
    }
}

impl Encodable for Witness {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let len = VarInt::from(self.witness_elements);
        len.consensus_encode(w)?;
        let content_with_indices_len = self.content.len();
        let indices_size = self.witness_elements * 4;
        let content_len = content_with_indices_len - indices_size;
        w.emit_slice(&self.content[..content_len])?;
        Ok(content_len + len.size())
    }
}

impl Witness {
    /// Creates a new empty [`Witness`].
    #[inline]
    pub const fn new() -> Self {
        Witness { content: Vec::new(), witness_elements: 0, indices_start: 0 }
    }

    /// Creates a witness required to spend a P2WPKH output.
    ///
    /// The witness will be made up of the DER encoded signature + sighash_type followed by the
    /// serialized public key. Also useful for spending a P2SH-P2WPKH output.
    ///
    /// It is expected that `pubkey` is related to the secret key used to create `signature`.
    pub fn p2wpkh(signature: &ecdsa::Signature, pubkey: &secp256k1::PublicKey) -> Witness {
        let mut witness = Witness::new();
        witness.push_slice(&signature.serialize());
        witness.push_slice(&pubkey.serialize());
        witness
    }

    /// Creates a witness required to do a key path spend of a P2TR output.
    pub fn p2tr_key_spend(signature: &taproot::Signature) -> Witness {
        let mut witness = Witness::new();
        witness.push_slice(&signature.serialize());
        witness
    }

    /// Creates a [`Witness`] object from a slice of bytes slices where each slice is a witness item.
    pub fn from_slice<T: AsRef<[u8]>>(slice: &[T]) -> Self {
        let witness_elements = slice.len();
        let index_size = witness_elements * 4;
        let content_size = slice
            .iter()
            .map(|elem| elem.as_ref().len() + VarInt::from(elem.as_ref().len()).size())
            .sum();

        let mut content = vec![0u8; content_size + index_size];
        let mut cursor = 0usize;
        for (i, elem) in slice.iter().enumerate() {
            encode_cursor(&mut content, content_size, i, cursor);
            let elem_len_varint = VarInt::from(elem.as_ref().len());
            elem_len_varint
                .consensus_encode(&mut &mut content[cursor..cursor + elem_len_varint.size()])
                .expect("writers on vec don't errors, space granted by content_size");
            cursor += elem_len_varint.size();
            content[cursor..cursor + elem.as_ref().len()].copy_from_slice(elem.as_ref());
            cursor += elem.as_ref().len();
        }

        Witness { witness_elements, content, indices_start: content_size }
    }

    /// Convenience method to create an array of byte-arrays from this witness.
    pub fn to_vec(&self) -> Vec<Vec<u8>> { self.iter().map(|s| s.to_vec()).collect() }

    /// Returns `true` if the witness contains no element.
    pub fn is_empty(&self) -> bool { self.witness_elements == 0 }

    /// Returns a struct implementing [`Iterator`].
    pub fn iter(&self) -> Iter {
        Iter { inner: self.content.as_slice(), indices_start: self.indices_start, current_index: 0 }
    }

    /// Returns the number of elements this witness holds.
    pub fn len(&self) -> usize { self.witness_elements }

    /// Returns the number of bytes this witness contributes to a transactions total size.
    pub fn size(&self) -> usize {
        let mut size: usize = 0;

        size += VarInt::from(self.witness_elements).size();
        size += self
            .iter()
            .map(|witness_element| {
                VarInt::from(witness_element.len()).size() + witness_element.len()
            })
            .sum::<usize>();

        size
    }

    /// Clear the witness.
    pub fn clear(&mut self) {
        self.content.clear();
        self.witness_elements = 0;
        self.indices_start = 0;
    }

    /// Push a new element on the witness, requires an allocation.
    pub fn push<T: AsRef<[u8]>>(&mut self, new_element: T) {
        self.push_slice(new_element.as_ref());
    }

    /// Push a new element slice onto the witness stack.
    fn push_slice(&mut self, new_element: &[u8]) {
        self.witness_elements += 1;
        let previous_content_end = self.indices_start;
        let element_len_varint = VarInt::from(new_element.len());
        let current_content_len = self.content.len();
        let new_item_total_len = element_len_varint.size() + new_element.len();
        self.content.resize(current_content_len + new_item_total_len + 4, 0);

        self.content[previous_content_end..].rotate_right(new_item_total_len);
        self.indices_start += new_item_total_len;
        encode_cursor(
            &mut self.content,
            self.indices_start,
            self.witness_elements - 1,
            previous_content_end,
        );

        let end_varint = previous_content_end + element_len_varint.size();
        element_len_varint
            .consensus_encode(&mut &mut self.content[previous_content_end..end_varint])
            .expect("writers on vec don't error, space granted through previous resize");
        self.content[end_varint..end_varint + new_element.len()].copy_from_slice(new_element);
    }

    /// Pushes, as a new element on the witness, an ECDSA signature.
    ///
    /// Pushes the DER encoded signature + sighash_type, requires an allocation.
    pub fn push_ecdsa_signature(&mut self, signature: &ecdsa::Signature) {
        self.push_slice(&signature.serialize())
    }

    fn element_at(&self, index: usize) -> Option<&[u8]> {
        let varint = VarInt::consensus_decode(&mut &self.content[index..]).ok()?;
        let start = index + varint.size();
        Some(&self.content[start..start + varint.0 as usize])
    }

    /// Returns the last element in the witness, if any.
    pub fn last(&self) -> Option<&[u8]> {
        if self.witness_elements == 0 {
            None
        } else {
            self.nth(self.witness_elements - 1)
        }
    }

    /// Returns the second-to-last element in the witness, if any.
    pub fn second_to_last(&self) -> Option<&[u8]> {
        if self.witness_elements <= 1 {
            None
        } else {
            self.nth(self.witness_elements - 2)
        }
    }

    /// Return the nth element in the witness, if any
    pub fn nth(&self, index: usize) -> Option<&[u8]> {
        let pos = decode_cursor(&self.content, self.indices_start, index)?;
        self.element_at(pos)
    }

    /// Get Tapscript following BIP341 rules regarding accounting for an annex.
    ///
    /// This does not guarantee that this represents a P2TR [`Witness`]. It
    /// merely gets the second to last or third to last element depending on
    /// the first byte of the last element being equal to 0x50. See
    /// [Script::is_p2tr](crate::blockdata::script::Script::is_p2tr) to
    /// check whether this is actually a Taproot witness.
    pub fn tapscript(&self) -> Option<&Script> {
        self.last().and_then(|last| {
            // From BIP341:
            // If there are at least two witness elements, and the first byte of
            // the last element is 0x50, this last element is called annex a
            // and is removed from the witness stack.
            if self.len() >= 3 && last.first() == Some(&TAPROOT_ANNEX_PREFIX) {
                self.nth(self.len() - 3).map(Script::from_bytes)
            } else if self.len() >= 2 {
                self.nth(self.len() - 2).map(Script::from_bytes)
            } else {
                None
            }
        })
    }

    /// Get the taproot control block following BIP341 rules.
    ///
    /// This does not guarantee that this represents a P2TR [`Witness`]. It
    /// merely gets the last or second to last element depending on the first
    /// byte of the last element being equal to 0x50. See
    /// [Script::is_p2tr](crate::blockdata::script::Script::is_p2tr) to
    /// check whether this is actually a Taproot witness.
    pub fn taproot_control_block(&self) -> Option<&[u8]> {
        self.last().and_then(|last| {
            // From BIP341:
            // If there are at least two witness elements, and the first byte of
            // the last element is 0x50, this last element is called annex a
            // and is removed from the witness stack.
            if self.len() >= 3 && last.first() == Some(&TAPROOT_ANNEX_PREFIX) {
                self.nth(self.len() - 2)
            } else if self.len() >= 2 {
                Some(last)
            } else {
                None
            }
        })
    }

    /// Get the taproot annex following BIP341 rules.
    ///
    /// This does not guarantee that this represents a P2TR [`Witness`]. See
    /// [Script::is_p2tr](crate::blockdata::script::Script::is_p2tr) to
    /// check whether this is actually a Taproot witness.
    pub fn taproot_annex(&self) -> Option<&[u8]> {
        self.last().and_then(|last| {
            // From BIP341:
            // If there are at least two witness elements, and the first byte of
            // the last element is 0x50, this last element is called annex a
            // and is removed from the witness stack.
            if self.len() >= 2 && last.first() == Some(&TAPROOT_ANNEX_PREFIX) {
                Some(last)
            } else {
                None
            }
        })
    }

    /// Get the p2wsh witness script following BIP141 rules.
    ///
    /// This does not guarantee that this represents a P2WS [`Witness`]. See
    /// [Script::is_p2wsh](crate::blockdata::script::Script::is_p2wsh) to
    /// check whether this is actually a P2WSH witness.
    pub fn witness_script(&self) -> Option<&Script> {
        self.last().map(Script::from_bytes)
    }
}

impl Index<usize> for Witness {
    type Output = [u8];

    fn index(&self, index: usize) -> &Self::Output { self.nth(index).expect("Out of Bounds") }
}

impl<'a> Iterator for Iter<'a> {
    type Item = &'a [u8];

    fn next(&mut self) -> Option<Self::Item> {
        let index = decode_cursor(self.inner, self.indices_start, self.current_index)?;
        let varint = VarInt::consensus_decode(&mut &self.inner[index..]).ok()?;
        let start = index + varint.size();
        let end = start + varint.0 as usize;
        let slice = &self.inner[start..end];
        self.current_index += 1;
        Some(slice)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let total_count = (self.inner.len() - self.indices_start) / 4;
        let remaining = total_count - self.current_index;
        (remaining, Some(remaining))
    }
}

impl<'a> ExactSizeIterator for Iter<'a> {}

impl<'a> IntoIterator for &'a Witness {
    type IntoIter = Iter<'a>;
    type Item = &'a [u8];

    fn into_iter(self) -> Self::IntoIter { self.iter() }
}

// Serde keep backward compatibility with old Vec<Vec<u8>> format
#[cfg(feature = "serde")]
impl serde::Serialize for Witness {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        use serde::ser::SerializeSeq;

        let human_readable = serializer.is_human_readable();
        let mut seq = serializer.serialize_seq(Some(self.witness_elements))?;

        for elem in self.iter() {
            if human_readable {
                seq.serialize_element(&crate::serde_utils::SerializeBytesAsHex(elem))?;
            } else {
                seq.serialize_element(&elem)?;
            }
        }
        seq.end()
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Witness {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        struct Visitor; // Human-readable visitor.
        impl<'de> serde::de::Visitor<'de> for Visitor {
            type Value = Witness;

            fn expecting(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                write!(f, "a sequence of hex arrays")
            }

            fn visit_seq<A: serde::de::SeqAccess<'de>>(
                self,
                mut a: A,
            ) -> Result<Self::Value, A::Error> {
                use hex::FromHex;
                use hex::HexToBytesError::*;
                use serde::de::{self, Unexpected};

                let mut ret = match a.size_hint() {
                    Some(len) => Vec::with_capacity(len),
                    None => Vec::new(),
                };

                while let Some(elem) = a.next_element::<String>()? {
                    let vec = Vec::<u8>::from_hex(&elem).map_err(|e| match e {
                        InvalidChar(ref e) => match core::char::from_u32(e.invalid_char().into()) {
                            Some(c) => de::Error::invalid_value(
                                Unexpected::Char(c),
                                &"a valid hex character",
                            ),
                            None => de::Error::invalid_value(
                                Unexpected::Unsigned(e.invalid_char().into()),
                                &"a valid hex character",
                            ),
                        },
                        OddLengthString(ref e) =>
                            de::Error::invalid_length(e.length(), &"an even length string"),
                    })?;
                    ret.push(vec);
                }
                Ok(Witness::from_slice(&ret))
            }
        }

        if deserializer.is_human_readable() {
            deserializer.deserialize_seq(Visitor)
        } else {
            let vec: Vec<Vec<u8>> = serde::Deserialize::deserialize(deserializer)?;
            Ok(Witness::from_slice(&vec))
        }
    }
}

impl From<Vec<Vec<u8>>> for Witness {
    fn from(vec: Vec<Vec<u8>>) -> Self { Witness::from_slice(&vec) }
}

impl From<&[&[u8]]> for Witness {
    fn from(slice: &[&[u8]]) -> Self { Witness::from_slice(slice) }
}

impl From<&[Vec<u8>]> for Witness {
    fn from(slice: &[Vec<u8>]) -> Self { Witness::from_slice(slice) }
}

impl From<Vec<&[u8]>> for Witness {
    fn from(vec: Vec<&[u8]>) -> Self { Witness::from_slice(&vec) }
}

impl Default for Witness {
    fn default() -> Self { Self::new() }
}

#[cfg(test)]
mod test {
    use hex::test_hex_unwrap as hex;

    use super::*;
    use crate::consensus::{deserialize, serialize};
    use crate::sighash::EcdsaSighashType;
    use crate::Transaction;

    fn append_u32_vec(mut v: Vec<u8>, n: &[u32]) -> Vec<u8> {
        for &num in n {
            v.extend_from_slice(&num.to_ne_bytes());
        }
        v
    }

    #[test]
    fn witness_debug_can_display_empty_instruction() {
        let witness = Witness {
            witness_elements: 1,
            content: append_u32_vec(vec![], &[0]),
            indices_start: 2,
        };
        println!("{:?}", witness);
    }

    #[test]
    fn test_push() {
        let mut witness = Witness::default();
        assert_eq!(witness.last(), None);
        assert_eq!(witness.second_to_last(), None);
        assert_eq!(witness.nth(0), None);
        assert_eq!(witness.nth(1), None);
        assert_eq!(witness.nth(2), None);
        assert_eq!(witness.nth(3), None);
        witness.push(&vec![0u8]);
        let expected = Witness {
            witness_elements: 1,
            content: append_u32_vec(vec![1u8, 0], &[0]),
            indices_start: 2,
        };
        assert_eq!(witness, expected);
        assert_eq!(witness.last(), Some(&[0u8][..]));
        assert_eq!(witness.second_to_last(), None);
        assert_eq!(witness.nth(0), Some(&[0u8][..]));
        assert_eq!(witness.nth(1), None);
        assert_eq!(witness.nth(2), None);
        assert_eq!(witness.nth(3), None);
        assert_eq!(&witness[0], &[0u8][..]);
        witness.push(&vec![2u8, 3u8]);
        let expected = Witness {
            witness_elements: 2,
            content: append_u32_vec(vec![1u8, 0, 2, 2, 3], &[0, 2]),
            indices_start: 5,
        };
        assert_eq!(witness, expected);
        assert_eq!(witness.last(), Some(&[2u8, 3u8][..]));
        assert_eq!(witness.second_to_last(), Some(&[0u8][..]));
        assert_eq!(witness.nth(0), Some(&[0u8][..]));
        assert_eq!(witness.nth(1), Some(&[2u8, 3u8][..]));
        assert_eq!(witness.nth(2), None);
        assert_eq!(witness.nth(3), None);
        assert_eq!(&witness[0], &[0u8][..]);
        assert_eq!(&witness[1], &[2u8, 3u8][..]);
        witness.push(&vec![4u8, 5u8]);
        let expected = Witness {
            witness_elements: 3,
            content: append_u32_vec(vec![1u8, 0, 2, 2, 3, 2, 4, 5], &[0, 2, 5]),
            indices_start: 8,
        };
        assert_eq!(witness, expected);
        assert_eq!(witness.last(), Some(&[4u8, 5u8][..]));
        assert_eq!(witness.second_to_last(), Some(&[2u8, 3u8][..]));
        assert_eq!(witness.nth(0), Some(&[0u8][..]));
        assert_eq!(witness.nth(1), Some(&[2u8, 3u8][..]));
        assert_eq!(witness.nth(2), Some(&[4u8, 5u8][..]));
        assert_eq!(witness.nth(3), None);
        assert_eq!(&witness[0], &[0u8][..]);
        assert_eq!(&witness[1], &[2u8, 3u8][..]);
        assert_eq!(&witness[2], &[4u8, 5u8][..]);
    }

    #[test]
    fn test_iter_len() {
        let mut witness = Witness::default();
        for i in 0..5 {
            assert_eq!(witness.iter().len(), i);
            witness.push(&vec![0u8]);
        }
        let mut iter = witness.iter();
        for i in (0..=5).rev() {
            assert_eq!(iter.len(), i);
            iter.next();
        }
    }

    #[test]
    fn test_push_ecdsa_sig() {
        // The very first signature in block 734,958
        let sig_bytes =
            hex!("304402207c800d698f4b0298c5aac830b822f011bb02df41eb114ade9a6702f364d5e39c0220366900d2a60cab903e77ef7dd415d46509b1f78ac78906e3296f495aa1b1b541");
        let signature = secp256k1::ecdsa::Signature::from_der(&sig_bytes).unwrap();
        let mut witness = Witness::default();
        let signature = crate::ecdsa::Signature { signature, sighash_type: EcdsaSighashType::All };
        witness.push_ecdsa_signature(&signature);
        let expected_witness = vec![hex!(
            "304402207c800d698f4b0298c5aac830b822f011bb02df41eb114ade9a6702f364d5e39c0220366900d2a60cab903e77ef7dd415d46509b1f78ac78906e3296f495aa1b1b54101")
            ];
        assert_eq!(witness.to_vec(), expected_witness);
    }

    #[test]
    fn test_witness() {
        let w0 = hex!("03d2e15674941bad4a996372cb87e1856d3652606d98562fe39c5e9e7e413f2105");
        let w1 = hex!("000000");
        let witness_vec = vec![w0.clone(), w1.clone()];
        let witness_serialized: Vec<u8> = serialize(&witness_vec);
        let witness = Witness {
            content: append_u32_vec(witness_serialized[1..].to_vec(), &[0, 34]),
            witness_elements: 2,
            indices_start: 38,
        };
        for (i, el) in witness.iter().enumerate() {
            assert_eq!(witness_vec[i], el);
        }
        assert_eq!(witness.last(), Some(&w1[..]));
        assert_eq!(witness.second_to_last(), Some(&w0[..]));
        assert_eq!(witness.nth(0), Some(&w0[..]));
        assert_eq!(witness.nth(1), Some(&w1[..]));
        assert_eq!(witness.nth(2), None);
        assert_eq!(&witness[0], &w0[..]);
        assert_eq!(&witness[1], &w1[..]);

        let w_into = Witness::from_slice(&witness_vec);
        assert_eq!(w_into, witness);

        assert_eq!(witness_serialized, serialize(&witness));
    }

    #[test]
    fn test_get_tapscript() {
        let tapscript = hex!("deadbeef");
        let control_block = hex!("02");
        // annex starting with 0x50 causes the branching logic.
        let annex = hex!("50");

        let witness_vec = vec![tapscript.clone(), control_block.clone()];
        let witness_vec_annex = vec![tapscript.clone(), control_block, annex];

        let witness_serialized: Vec<u8> = serialize(&witness_vec);
        let witness_serialized_annex: Vec<u8> = serialize(&witness_vec_annex);

        let witness = deserialize::<Witness>(&witness_serialized[..]).unwrap();
        let witness_annex = deserialize::<Witness>(&witness_serialized_annex[..]).unwrap();

        // With or without annex, the tapscript should be returned.
        assert_eq!(witness.tapscript(), Some(Script::from_bytes(&tapscript[..])));
        assert_eq!(witness_annex.tapscript(), Some(Script::from_bytes(&tapscript[..])));
    }

    #[test]
    fn test_get_control_block() {
        let tapscript = hex!("deadbeef");
        let control_block = hex!("02");
        // annex starting with 0x50 causes the branching logic.
        let annex = hex!("50");

        let witness_vec = vec![tapscript.clone(), control_block.clone()];
        let witness_vec_annex = vec![tapscript.clone(), control_block.clone(), annex];

        let witness_serialized: Vec<u8> = serialize(&witness_vec);
        let witness_serialized_annex: Vec<u8> = serialize(&witness_vec_annex);

        let witness = deserialize::<Witness>(&witness_serialized[..]).unwrap();
        let witness_annex = deserialize::<Witness>(&witness_serialized_annex[..]).unwrap();

        // With or without annex, the tapscript should be returned.
        assert_eq!(witness.taproot_control_block(), Some(&control_block[..]));
        assert_eq!(witness_annex.taproot_control_block(), Some(&control_block[..]));
    }

    #[test]
    fn test_get_annex() {
        let tapscript = hex!("deadbeef");
        let control_block = hex!("02");
        // annex starting with 0x50 causes the branching logic.
        let annex = hex!("50");

        let witness_vec = vec![tapscript.clone(), control_block.clone()];
        let witness_vec_annex = vec![tapscript.clone(), control_block.clone(), annex.clone()];

        let witness_serialized: Vec<u8> = serialize(&witness_vec);
        let witness_serialized_annex: Vec<u8> = serialize(&witness_vec_annex);

        let witness = deserialize::<Witness>(&witness_serialized[..]).unwrap();
        let witness_annex = deserialize::<Witness>(&witness_serialized_annex[..]).unwrap();

        // With or without annex, the tapscript should be returned.
        assert_eq!(witness.taproot_annex(), None);
        assert_eq!(witness_annex.taproot_annex(), Some(&annex[..]));

        // Now for keyspend
        let signature = hex!("deadbeef");
        // annex starting with 0x50 causes the branching logic.
        let annex = hex!("50");

        let witness_vec = vec![signature.clone()];
        let witness_vec_annex = vec![signature.clone(), annex.clone()];

        let witness_serialized: Vec<u8> = serialize(&witness_vec);
        let witness_serialized_annex: Vec<u8> = serialize(&witness_vec_annex);

        let witness = deserialize::<Witness>(&witness_serialized[..]).unwrap();
        let witness_annex = deserialize::<Witness>(&witness_serialized_annex[..]).unwrap();

        // With or without annex, the tapscript should be returned.
        assert_eq!(witness.taproot_annex(), None);
        assert_eq!(witness_annex.taproot_annex(), Some(&annex[..]));
    }

    #[test]
    fn test_tx() {
        const S: &str = "02000000000102b44f26b275b8ad7b81146ba3dbecd081f9c1ea0dc05b97516f56045cfcd3df030100000000ffffffff1cb4749ae827c0b75f3d0a31e63efc8c71b47b5e3634a4c698cd53661cab09170100000000ffffffff020b3a0500000000001976a9143ea74de92762212c96f4dd66c4d72a4deb20b75788ac630500000000000016001493a8dfd1f0b6a600ab01df52b138cda0b82bb7080248304502210084622878c94f4c356ce49c8e33a063ec90f6ee9c0208540888cfab056cd1fca9022014e8dbfdfa46d318c6887afd92dcfa54510e057565e091d64d2ee3a66488f82c0121026e181ffb98ebfe5a64c983073398ea4bcd1548e7b971b4c175346a25a1c12e950247304402203ef00489a0d549114977df2820fab02df75bebb374f5eee9e615107121658cfa02204751f2d1784f8e841bff6d3bcf2396af2f1a5537c0e4397224873fbd3bfbe9cf012102ae6aa498ce2dd204e9180e71b4fb1260fe3d1a95c8025b34e56a9adf5f278af200000000";
        let tx_bytes = hex!(S);
        let tx: Transaction = deserialize(&tx_bytes).unwrap();

        let expected_wit = ["304502210084622878c94f4c356ce49c8e33a063ec90f6ee9c0208540888cfab056cd1fca9022014e8dbfdfa46d318c6887afd92dcfa54510e057565e091d64d2ee3a66488f82c01", "026e181ffb98ebfe5a64c983073398ea4bcd1548e7b971b4c175346a25a1c12e95"];
        for (i, wit_el) in tx.input[0].witness.iter().enumerate() {
            assert_eq!(expected_wit[i], wit_el.to_lower_hex_string());
        }
        assert_eq!(expected_wit[1], tx.input[0].witness.last().unwrap().to_lower_hex_string());
        assert_eq!(
            expected_wit[0],
            tx.input[0].witness.second_to_last().unwrap().to_lower_hex_string()
        );
        assert_eq!(expected_wit[0], tx.input[0].witness.nth(0).unwrap().to_lower_hex_string());
        assert_eq!(expected_wit[1], tx.input[0].witness.nth(1).unwrap().to_lower_hex_string());
        assert_eq!(None, tx.input[0].witness.nth(2));
        assert_eq!(expected_wit[0], tx.input[0].witness[0].to_lower_hex_string());
        assert_eq!(expected_wit[1], tx.input[0].witness[1].to_lower_hex_string());

        let tx_bytes_back = serialize(&tx);
        assert_eq!(tx_bytes_back, tx_bytes);
    }

    #[test]
    fn fuzz_cases() {
        let bytes = hex!("26ff0000000000c94ce592cf7a4cbb68eb00ce374300000057cd0000000000000026");
        assert!(deserialize::<Witness>(&bytes).is_err()); // OversizedVectorAllocation

        let bytes = hex!("24000000ffffffffffffffffffffffff");
        assert!(deserialize::<Witness>(&bytes).is_err()); // OversizedVectorAllocation
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde_bincode() {
        use bincode;

        let old_witness_format = vec![vec![0u8], vec![2]];
        let new_witness_format = Witness::from_slice(&old_witness_format);

        let old = bincode::serialize(&old_witness_format).unwrap();
        let new = bincode::serialize(&new_witness_format).unwrap();

        assert_eq!(old, new);

        let back: Witness = bincode::deserialize(&new).unwrap();
        assert_eq!(new_witness_format, back);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde_human() {
        use serde_json;

        let witness = Witness::from_slice(&[vec![0u8, 123, 75], vec![2u8, 6, 3, 7, 8]]);

        let json = serde_json::to_string(&witness).unwrap();

        assert_eq!(json, r#"["007b4b","0206030708"]"#);

        let back: Witness = serde_json::from_str(&json).unwrap();
        assert_eq!(witness, back);
    }
}

#[cfg(bench)]
mod benches {
    use test::{black_box, Bencher};

    use super::Witness;

    #[bench]
    pub fn bench_big_witness_to_vec(bh: &mut Bencher) {
        let raw_witness = [[1u8]; 5];
        let witness = Witness::from_slice(&raw_witness);

        bh.iter(|| {
            black_box(witness.to_vec());
        });
    }

    #[bench]
    pub fn bench_witness_to_vec(bh: &mut Bencher) {
        let raw_witness = vec![vec![1u8]; 3];
        let witness = Witness::from_slice(&raw_witness);

        bh.iter(|| {
            black_box(witness.to_vec());
        });
    }
}