1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
// SPDX-License-Identifier: CC0-1.0

//! Bitcoin consensus-encodable types.
//!
//! This is basically a replacement of the `Encodable` trait which does
//! normalization of endianness etc., to ensure that the encoding matches
//! the network consensus encoding.
//!
//! Essentially, anything that must go on the _disk_ or _network_ must be
//! encoded using the `Encodable` trait, since this data must be the same for
//! all systems. Any data going to the _user_ e.g., over JSONRPC, should use the
//! ordinary `Encodable` trait. (This should also be the same across systems, of
//! course, but has some critical differences from the network format e.g.,
//! scripts come with an opcode decode, hashes are big-endian, numbers are
//! typically big-endian decimals, etc.)
//!

use core::{fmt, mem};

use hashes::{sha256, sha256d, Hash};
use hex::error::{InvalidCharError, OddLengthStringError};
use internals::write_err;
use io::{Cursor, Read, Write};

use crate::bip152::{PrefilledTransaction, ShortId};
use crate::bip158::{FilterHash, FilterHeader};
use crate::blockdata::block::{self, BlockHash, TxMerkleNode};
use crate::blockdata::transaction::{Transaction, TxIn, TxOut};
use crate::consensus::{DecodeError, IterReader};
#[cfg(feature = "std")]
use crate::p2p::{
    address::{AddrV2Message, Address},
    message_blockdata::Inventory,
};
use crate::prelude::*;
use crate::taproot::TapLeafHash;

/// Encoding error.
#[derive(Debug)]
#[non_exhaustive]
pub enum Error {
    /// And I/O error.
    Io(io::Error),
    /// Tried to allocate an oversized vector.
    OversizedVectorAllocation {
        /// The capacity requested.
        requested: usize,
        /// The maximum capacity.
        max: usize,
    },
    /// Checksum was invalid.
    InvalidChecksum {
        /// The expected checksum.
        expected: [u8; 4],
        /// The invalid checksum.
        actual: [u8; 4],
    },
    /// VarInt was encoded in a non-minimal way.
    NonMinimalVarInt,
    /// Parsing error.
    ParseFailed(&'static str),
    /// Unsupported Segwit flag.
    UnsupportedSegwitFlag(u8),
}

internals::impl_from_infallible!(Error);

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use Error::*;

        match *self {
            Io(ref e) => write_err!(f, "IO error"; e),
            OversizedVectorAllocation { requested: ref r, max: ref m } =>
                write!(f, "allocation of oversized vector: requested {}, maximum {}", r, m),
            InvalidChecksum { expected: ref e, actual: ref a } =>
                write!(f, "invalid checksum: expected {:x}, actual {:x}", e.as_hex(), a.as_hex()),
            NonMinimalVarInt => write!(f, "non-minimal varint"),
            ParseFailed(ref s) => write!(f, "parse failed: {}", s),
            UnsupportedSegwitFlag(ref swflag) =>
                write!(f, "unsupported segwit version: {}", swflag),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use Error::*;

        match self {
            Io(e) => Some(e),
            OversizedVectorAllocation { .. }
            | InvalidChecksum { .. }
            | NonMinimalVarInt
            | ParseFailed(_)
            | UnsupportedSegwitFlag(_) => None,
        }
    }
}

impl From<io::Error> for Error {
    fn from(error: io::Error) -> Self { Error::Io(error) }
}

/// Hex deserialization error.
#[derive(Debug)]
pub enum FromHexError {
    /// Purported hex string had odd length.
    OddLengthString(OddLengthStringError),
    /// Decoding error.
    Decode(DecodeError<InvalidCharError>),
}

impl fmt::Display for FromHexError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use FromHexError::*;

        match *self {
            OddLengthString(ref e) =>
                write_err!(f, "odd length, failed to create bytes from hex"; e),
            Decode(ref e) => write_err!(f, "decoding error"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for FromHexError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use FromHexError::*;

        match *self {
            OddLengthString(ref e) => Some(e),
            Decode(ref e) => Some(e),
        }
    }
}

impl From<OddLengthStringError> for FromHexError {
    #[inline]
    fn from(e: OddLengthStringError) -> Self { Self::OddLengthString(e) }
}

/// Encodes an object into a vector.
pub fn serialize<T: Encodable + ?Sized>(data: &T) -> Vec<u8> {
    let mut encoder = Vec::new();
    let len = data.consensus_encode(&mut encoder).expect("in-memory writers don't error");
    debug_assert_eq!(len, encoder.len());
    encoder
}

/// Encodes an object into a hex-encoded string.
pub fn serialize_hex<T: Encodable + ?Sized>(data: &T) -> String {
    serialize(data).to_lower_hex_string()
}

/// Deserializes an object from a vector, will error if said deserialization
/// doesn't consume the entire vector.
pub fn deserialize<T: Decodable>(data: &[u8]) -> Result<T, Error> {
    let (rv, consumed) = deserialize_partial(data)?;

    // Fail if data are not consumed entirely.
    if consumed == data.len() {
        Ok(rv)
    } else {
        Err(Error::ParseFailed("data not consumed entirely when explicitly deserializing"))
    }
}

/// Deserialize any decodable type from a hex string, will error if said deserialization
/// doesn't consume the entire vector.
pub fn deserialize_hex<T: Decodable>(hex: &str) -> Result<T, FromHexError> {
    let iter = hex::HexSliceToBytesIter::new(hex)?;
    let reader = IterReader::new(iter);
    Ok(reader.decode().map_err(FromHexError::Decode)?)
}

/// Deserializes an object from a vector, but will not report an error if said deserialization
/// doesn't consume the entire vector.
pub fn deserialize_partial<T: Decodable>(data: &[u8]) -> Result<(T, usize), Error> {
    let mut decoder = Cursor::new(data);
    let rv = Decodable::consensus_decode_from_finite_reader(&mut decoder)?;
    let consumed = decoder.position() as usize;

    Ok((rv, consumed))
}

/// Extensions of `Write` to encode data as per Bitcoin consensus.
pub trait WriteExt: Write {
    /// Outputs a 64-bit unsigned integer.
    fn emit_u64(&mut self, v: u64) -> Result<(), io::Error>;
    /// Outputs a 32-bit unsigned integer.
    fn emit_u32(&mut self, v: u32) -> Result<(), io::Error>;
    /// Outputs a 16-bit unsigned integer.
    fn emit_u16(&mut self, v: u16) -> Result<(), io::Error>;
    /// Outputs an 8-bit unsigned integer.
    fn emit_u8(&mut self, v: u8) -> Result<(), io::Error>;

    /// Outputs a 64-bit signed integer.
    fn emit_i64(&mut self, v: i64) -> Result<(), io::Error>;
    /// Outputs a 32-bit signed integer.
    fn emit_i32(&mut self, v: i32) -> Result<(), io::Error>;
    /// Outputs a 16-bit signed integer.
    fn emit_i16(&mut self, v: i16) -> Result<(), io::Error>;
    /// Outputs an 8-bit signed integer.
    fn emit_i8(&mut self, v: i8) -> Result<(), io::Error>;

    /// Outputs a boolean.
    fn emit_bool(&mut self, v: bool) -> Result<(), io::Error>;

    /// Outputs a byte slice.
    fn emit_slice(&mut self, v: &[u8]) -> Result<(), io::Error>;
}

/// Extensions of `Read` to decode data as per Bitcoin consensus.
pub trait ReadExt: Read {
    /// Reads a 64-bit unsigned integer.
    fn read_u64(&mut self) -> Result<u64, Error>;
    /// Reads a 32-bit unsigned integer.
    fn read_u32(&mut self) -> Result<u32, Error>;
    /// Reads a 16-bit unsigned integer.
    fn read_u16(&mut self) -> Result<u16, Error>;
    /// Reads an 8-bit unsigned integer.
    fn read_u8(&mut self) -> Result<u8, Error>;

    /// Reads a 64-bit signed integer.
    fn read_i64(&mut self) -> Result<i64, Error>;
    /// Reads a 32-bit signed integer.
    fn read_i32(&mut self) -> Result<i32, Error>;
    /// Reads a 16-bit signed integer.
    fn read_i16(&mut self) -> Result<i16, Error>;
    /// Reads an 8-bit signed integer.
    fn read_i8(&mut self) -> Result<i8, Error>;

    /// Reads a boolean.
    fn read_bool(&mut self) -> Result<bool, Error>;

    /// Reads a byte slice.
    fn read_slice(&mut self, slice: &mut [u8]) -> Result<(), Error>;
}

macro_rules! encoder_fn {
    ($name:ident, $val_type:ty) => {
        #[inline]
        fn $name(&mut self, v: $val_type) -> core::result::Result<(), io::Error> {
            self.write_all(&v.to_le_bytes())
        }
    };
}

macro_rules! decoder_fn {
    ($name:ident, $val_type:ty, $byte_len: expr) => {
        #[inline]
        fn $name(&mut self) -> core::result::Result<$val_type, Error> {
            let mut val = [0; $byte_len];
            self.read_exact(&mut val[..]).map_err(Error::Io)?;
            Ok(<$val_type>::from_le_bytes(val))
        }
    };
}

impl<W: Write + ?Sized> WriteExt for W {
    encoder_fn!(emit_u64, u64);
    encoder_fn!(emit_u32, u32);
    encoder_fn!(emit_u16, u16);
    encoder_fn!(emit_i64, i64);
    encoder_fn!(emit_i32, i32);
    encoder_fn!(emit_i16, i16);

    #[inline]
    fn emit_i8(&mut self, v: i8) -> Result<(), io::Error> { self.write_all(&[v as u8]) }
    #[inline]
    fn emit_u8(&mut self, v: u8) -> Result<(), io::Error> { self.write_all(&[v]) }
    #[inline]
    fn emit_bool(&mut self, v: bool) -> Result<(), io::Error> { self.write_all(&[v as u8]) }
    #[inline]
    fn emit_slice(&mut self, v: &[u8]) -> Result<(), io::Error> { self.write_all(v) }
}

impl<R: Read + ?Sized> ReadExt for R {
    decoder_fn!(read_u64, u64, 8);
    decoder_fn!(read_u32, u32, 4);
    decoder_fn!(read_u16, u16, 2);
    decoder_fn!(read_i64, i64, 8);
    decoder_fn!(read_i32, i32, 4);
    decoder_fn!(read_i16, i16, 2);

    #[inline]
    fn read_u8(&mut self) -> Result<u8, Error> {
        let mut slice = [0u8; 1];
        self.read_exact(&mut slice)?;
        Ok(slice[0])
    }
    #[inline]
    fn read_i8(&mut self) -> Result<i8, Error> {
        let mut slice = [0u8; 1];
        self.read_exact(&mut slice)?;
        Ok(slice[0] as i8)
    }
    #[inline]
    fn read_bool(&mut self) -> Result<bool, Error> { ReadExt::read_i8(self).map(|bit| bit != 0) }
    #[inline]
    fn read_slice(&mut self, slice: &mut [u8]) -> Result<(), Error> {
        self.read_exact(slice).map_err(Error::Io)
    }
}

/// Maximum size, in bytes, of a vector we are allowed to decode.
pub const MAX_VEC_SIZE: usize = 4_000_000;

/// Data which can be encoded in a consensus-consistent way.
pub trait Encodable {
    /// Encodes an object with a well-defined format.
    ///
    /// # Returns
    ///
    /// The number of bytes written on success. The only errors returned are errors propagated from
    /// the writer.
    fn consensus_encode<W: Write + ?Sized>(&self, writer: &mut W) -> Result<usize, io::Error>;
}

/// Data which can be encoded in a consensus-consistent way.
pub trait Decodable: Sized {
    /// Decode `Self` from a size-limited reader.
    ///
    /// Like `consensus_decode` but relies on the reader being limited in the amount of data it
    /// returns, e.g. by being wrapped in [`std::io::Take`].
    ///
    /// Failing to abide to this requirement might lead to memory exhaustion caused by malicious
    /// inputs.
    ///
    /// Users should default to `consensus_decode`, but when data to be decoded is already in a byte
    /// vector of a limited size, calling this function directly might be marginally faster (due to
    /// avoiding extra checks).
    ///
    /// ### Rules for trait implementations
    ///
    /// * Simple types that that have a fixed size (own and member fields), don't have to overwrite
    ///   this method, or be concern with it.
    /// * Types that deserialize using externally provided length should implement it:
    ///   * Make `consensus_decode` forward to `consensus_decode_bytes_from_finite_reader` with the
    ///     reader wrapped by `Take`. Failure to do so, without other forms of memory exhaustion
    ///     protection might lead to resource exhaustion vulnerability.
    ///   * Put a max cap on things like `Vec::with_capacity` to avoid oversized allocations, and
    ///     rely on the reader running out of data, and collections reallocating on a legitimately
    ///     oversized input data, instead of trying to enforce arbitrary length limits.
    /// * Types that contain other types that implement custom
    ///   `consensus_decode_from_finite_reader`, should also implement it applying same rules, and
    ///   in addition make sure to call `consensus_decode_from_finite_reader` on all members, to
    ///   avoid creating redundant `Take` wrappers. Failure to do so might result only in a tiny
    ///   performance hit.
    #[inline]
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
        reader: &mut R,
    ) -> Result<Self, Error> {
        // This method is always strictly less general than, `consensus_decode`, so it's safe and
        // make sense to default to just calling it. This way most types, that don't care about
        // protecting against resource exhaustion due to malicious input, can just ignore it.
        Self::consensus_decode(reader)
    }

    /// Decode an object with a well-defined format.
    ///
    /// This is the method that should be implemented for a typical, fixed sized type
    /// implementing this trait. Default implementation is wrapping the reader
    /// in [`crate::io::Take`] to limit the input size to [`MAX_VEC_SIZE`], and forwards the call to
    /// [`Self::consensus_decode_from_finite_reader`], which is convenient
    /// for types that override [`Self::consensus_decode_from_finite_reader`]
    /// instead.
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(reader: &mut R) -> Result<Self, Error> {
        Self::consensus_decode_from_finite_reader(&mut reader.take(MAX_VEC_SIZE as u64))
    }
}

/// A variable-length unsigned integer.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug)]
pub struct VarInt(pub u64);

/// Data and a 4-byte checksum.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct CheckedData {
    data: Vec<u8>,
    checksum: [u8; 4],
}

impl CheckedData {
    /// Creates a new `CheckedData` computing the checksum of given data.
    pub fn new(data: Vec<u8>) -> Self {
        let checksum = sha2_checksum(&data);
        Self { data, checksum }
    }

    /// Returns a reference to the raw data without the checksum.
    pub fn data(&self) -> &[u8] { &self.data }

    /// Returns the raw data without the checksum.
    pub fn into_data(self) -> Vec<u8> { self.data }

    /// Returns the checksum of the data.
    pub fn checksum(&self) -> [u8; 4] { self.checksum }
}

// Primitive types
macro_rules! impl_int_encodable {
    ($ty:ident, $meth_dec:ident, $meth_enc:ident) => {
        impl Decodable for $ty {
            #[inline]
            fn consensus_decode<R: Read + ?Sized>(
                r: &mut R,
            ) -> core::result::Result<Self, Error> {
                ReadExt::$meth_dec(r)
            }
        }
        impl Encodable for $ty {
            #[inline]
            fn consensus_encode<W: Write + ?Sized>(
                &self,
                w: &mut W,
            ) -> core::result::Result<usize, io::Error> {
                w.$meth_enc(*self)?;
                Ok(mem::size_of::<$ty>())
            }
        }
    };
}

impl_int_encodable!(u8, read_u8, emit_u8);
impl_int_encodable!(u16, read_u16, emit_u16);
impl_int_encodable!(u32, read_u32, emit_u32);
impl_int_encodable!(u64, read_u64, emit_u64);
impl_int_encodable!(i8, read_i8, emit_i8);
impl_int_encodable!(i16, read_i16, emit_i16);
impl_int_encodable!(i32, read_i32, emit_i32);
impl_int_encodable!(i64, read_i64, emit_i64);

#[allow(clippy::len_without_is_empty)] // VarInt has on concept of 'is_empty'.
impl VarInt {
    /// Returns the number of bytes this varint contributes to a transaction size.
    ///
    /// Returns 1 for 0..=0xFC, 3 for 0xFD..=(2^16-1), 5 for 0x10000..=(2^32-1), and 9 otherwise.
    #[inline]
    pub const fn size(&self) -> usize {
        match self.0 {
            0..=0xFC => 1,
            0xFD..=0xFFFF => 3,
            0x10000..=0xFFFFFFFF => 5,
            _ => 9,
        }
    }
}

/// Implements `From<T> for VarInt`.
///
/// `VarInt`s are consensus encoded as `u64`s so we store them as such. Casting from any integer size smaller than or equal to `u64` is always safe and the cast value is correctly handled by `consensus_encode`.
macro_rules! impl_var_int_from {
    ($($ty:tt),*) => {
        $(
            /// Creates a `VarInt` from a `usize` by casting the to a `u64`.
            impl From<$ty> for VarInt {
                fn from(x: $ty) -> Self { VarInt(x as u64) }
            }
        )*
    }
}
impl_var_int_from!(u8, u16, u32, u64, usize);

impl Encodable for VarInt {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        match self.0 {
            0..=0xFC => {
                (self.0 as u8).consensus_encode(w)?;
                Ok(1)
            }
            0xFD..=0xFFFF => {
                w.emit_u8(0xFD)?;
                (self.0 as u16).consensus_encode(w)?;
                Ok(3)
            }
            0x10000..=0xFFFFFFFF => {
                w.emit_u8(0xFE)?;
                (self.0 as u32).consensus_encode(w)?;
                Ok(5)
            }
            _ => {
                w.emit_u8(0xFF)?;
                self.0.consensus_encode(w)?;
                Ok(9)
            }
        }
    }
}

impl Decodable for VarInt {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        let n = ReadExt::read_u8(r)?;
        match n {
            0xFF => {
                let x = ReadExt::read_u64(r)?;
                if x < 0x100000000 {
                    Err(self::Error::NonMinimalVarInt)
                } else {
                    Ok(VarInt::from(x))
                }
            }
            0xFE => {
                let x = ReadExt::read_u32(r)?;
                if x < 0x10000 {
                    Err(self::Error::NonMinimalVarInt)
                } else {
                    Ok(VarInt::from(x))
                }
            }
            0xFD => {
                let x = ReadExt::read_u16(r)?;
                if x < 0xFD {
                    Err(self::Error::NonMinimalVarInt)
                } else {
                    Ok(VarInt::from(x))
                }
            }
            n => Ok(VarInt::from(n)),
        }
    }
}

impl Encodable for bool {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        w.emit_bool(*self)?;
        Ok(1)
    }
}

impl Decodable for bool {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<bool, Error> {
        ReadExt::read_bool(r)
    }
}

impl Encodable for String {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let b = self.as_bytes();
        let vi_len = VarInt(b.len() as u64).consensus_encode(w)?;
        w.emit_slice(b)?;
        Ok(vi_len + b.len())
    }
}

impl Decodable for String {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<String, Error> {
        String::from_utf8(Decodable::consensus_decode(r)?)
            .map_err(|_| self::Error::ParseFailed("String was not valid UTF8"))
    }
}

impl Encodable for Cow<'static, str> {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let b = self.as_bytes();
        let vi_len = VarInt(b.len() as u64).consensus_encode(w)?;
        w.emit_slice(b)?;
        Ok(vi_len + b.len())
    }
}

impl Decodable for Cow<'static, str> {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Cow<'static, str>, Error> {
        String::from_utf8(Decodable::consensus_decode(r)?)
            .map_err(|_| self::Error::ParseFailed("String was not valid UTF8"))
            .map(Cow::Owned)
    }
}

macro_rules! impl_array {
    ( $size:literal ) => {
        impl Encodable for [u8; $size] {
            #[inline]
            fn consensus_encode<W: WriteExt + ?Sized>(
                &self,
                w: &mut W,
            ) -> core::result::Result<usize, io::Error> {
                w.emit_slice(&self[..])?;
                Ok(self.len())
            }
        }

        impl Decodable for [u8; $size] {
            #[inline]
            fn consensus_decode<R: Read + ?Sized>(
                r: &mut R,
            ) -> core::result::Result<Self, Error> {
                let mut ret = [0; $size];
                r.read_slice(&mut ret)?;
                Ok(ret)
            }
        }
    };
}

impl_array!(2);
impl_array!(4);
impl_array!(6);
impl_array!(8);
impl_array!(10);
impl_array!(12);
impl_array!(16);
impl_array!(32);
impl_array!(33);

impl Decodable for [u16; 8] {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        let mut res = [0; 8];
        for item in &mut res {
            *item = Decodable::consensus_decode(r)?;
        }
        Ok(res)
    }
}

impl Encodable for [u16; 8] {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        for c in self.iter() {
            c.consensus_encode(w)?;
        }
        Ok(16)
    }
}

macro_rules! impl_vec {
    ($type: ty) => {
        impl Encodable for Vec<$type> {
            #[inline]
            fn consensus_encode<W: Write + ?Sized>(
                &self,
                w: &mut W,
            ) -> core::result::Result<usize, io::Error> {
                let mut len = 0;
                len += VarInt(self.len() as u64).consensus_encode(w)?;
                for c in self.iter() {
                    len += c.consensus_encode(w)?;
                }
                Ok(len)
            }
        }

        impl Decodable for Vec<$type> {
            #[inline]
            fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
                r: &mut R,
            ) -> core::result::Result<Self, Error> {
                let len = VarInt::consensus_decode_from_finite_reader(r)?.0;
                // Do not allocate upfront more items than if the sequence of type
                // occupied roughly quarter a block. This should never be the case
                // for normal data, but even if that's not true - `push` will just
                // reallocate.
                // Note: OOM protection relies on reader eventually running out of
                // data to feed us.
                let max_capacity = MAX_VEC_SIZE / 4 / mem::size_of::<$type>();
                let mut ret = Vec::with_capacity(core::cmp::min(len as usize, max_capacity));
                for _ in 0..len {
                    ret.push(Decodable::consensus_decode_from_finite_reader(r)?);
                }
                Ok(ret)
            }
        }
    };
}
impl_vec!(BlockHash);
impl_vec!(block::Header);
impl_vec!(FilterHash);
impl_vec!(FilterHeader);
impl_vec!(TxMerkleNode);
impl_vec!(Transaction);
impl_vec!(TxOut);
impl_vec!(TxIn);
impl_vec!(Vec<u8>);
impl_vec!(u64);
impl_vec!(TapLeafHash);
impl_vec!(VarInt);
impl_vec!(ShortId);
impl_vec!(PrefilledTransaction);

#[cfg(feature = "std")]
impl_vec!(Inventory);
#[cfg(feature = "std")]
impl_vec!((u32, Address));
#[cfg(feature = "std")]
impl_vec!(AddrV2Message);

pub(crate) fn consensus_encode_with_size<W: Write + ?Sized>(
    data: &[u8],
    w: &mut W,
) -> Result<usize, io::Error> {
    let vi_len = VarInt(data.len() as u64).consensus_encode(w)?;
    w.emit_slice(data)?;
    Ok(vi_len + data.len())
}

struct ReadBytesFromFiniteReaderOpts {
    len: usize,
    chunk_size: usize,
}

/// Read `opts.len` bytes from reader, where `opts.len` could potentially be malicious.
///
/// This function relies on reader being bound in amount of data
/// it returns for OOM protection. See [`Decodable::consensus_decode_from_finite_reader`].
#[inline]
fn read_bytes_from_finite_reader<D: Read + ?Sized>(
    d: &mut D,
    mut opts: ReadBytesFromFiniteReaderOpts,
) -> Result<Vec<u8>, Error> {
    let mut ret = vec![];

    assert_ne!(opts.chunk_size, 0);

    while opts.len > 0 {
        let chunk_start = ret.len();
        let chunk_size = core::cmp::min(opts.len, opts.chunk_size);
        let chunk_end = chunk_start + chunk_size;
        ret.resize(chunk_end, 0u8);
        d.read_slice(&mut ret[chunk_start..chunk_end])?;
        opts.len -= chunk_size;
    }

    Ok(ret)
}

impl Encodable for Vec<u8> {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        consensus_encode_with_size(self, w)
    }
}

impl Decodable for Vec<u8> {
    #[inline]
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        let len = VarInt::consensus_decode(r)?.0 as usize;
        // most real-world vec of bytes data, wouldn't be larger than 128KiB
        let opts = ReadBytesFromFiniteReaderOpts { len, chunk_size: 128 * 1024 };
        read_bytes_from_finite_reader(r, opts)
    }
}

impl Encodable for Box<[u8]> {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        consensus_encode_with_size(self, w)
    }
}

impl Decodable for Box<[u8]> {
    #[inline]
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        <Vec<u8>>::consensus_decode_from_finite_reader(r).map(From::from)
    }
}

/// Does a double-SHA256 on `data` and returns the first 4 bytes.
fn sha2_checksum(data: &[u8]) -> [u8; 4] {
    let checksum = <sha256d::Hash as Hash>::hash(data);
    [checksum[0], checksum[1], checksum[2], checksum[3]]
}

impl Encodable for CheckedData {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        u32::try_from(self.data.len())
            .expect("network message use u32 as length")
            .consensus_encode(w)?;
        self.checksum().consensus_encode(w)?;
        w.emit_slice(&self.data)?;
        Ok(8 + self.data.len())
    }
}

impl Decodable for CheckedData {
    #[inline]
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        let len = u32::consensus_decode_from_finite_reader(r)? as usize;

        let checksum = <[u8; 4]>::consensus_decode_from_finite_reader(r)?;
        let opts = ReadBytesFromFiniteReaderOpts { len, chunk_size: MAX_VEC_SIZE };
        let data = read_bytes_from_finite_reader(r, opts)?;
        let expected_checksum = sha2_checksum(&data);
        if expected_checksum != checksum {
            Err(self::Error::InvalidChecksum { expected: expected_checksum, actual: checksum })
        } else {
            Ok(CheckedData { data, checksum })
        }
    }
}

impl<'a, T: Encodable> Encodable for &'a T {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        (**self).consensus_encode(w)
    }
}

impl<'a, T: Encodable> Encodable for &'a mut T {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        (**self).consensus_encode(w)
    }
}

impl<T: Encodable> Encodable for rc::Rc<T> {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        (**self).consensus_encode(w)
    }
}

/// Note: This will fail to compile on old Rust for targets that don't support atomics
#[cfg(any(not(rust_v_1_60), target_has_atomic = "ptr"))]
impl<T: Encodable> Encodable for sync::Arc<T> {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        (**self).consensus_encode(w)
    }
}

macro_rules! tuple_encode {
    ($($x:ident),*) => {
        impl <$($x: Encodable),*> Encodable for ($($x),*) {
            #[inline]
            #[allow(non_snake_case)]
            fn consensus_encode<W: Write + ?Sized>(
                &self,
                w: &mut W,
            ) -> core::result::Result<usize, io::Error> {
                let &($(ref $x),*) = self;
                let mut len = 0;
                $(len += $x.consensus_encode(w)?;)*
                Ok(len)
            }
        }

        impl<$($x: Decodable),*> Decodable for ($($x),*) {
            #[inline]
            #[allow(non_snake_case)]
            fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> core::result::Result<Self, Error> {
                Ok(($({let $x = Decodable::consensus_decode(r)?; $x }),*))
            }
        }
    };
}

tuple_encode!(T0, T1);
tuple_encode!(T0, T1, T2);
tuple_encode!(T0, T1, T2, T3);
tuple_encode!(T0, T1, T2, T3, T4);
tuple_encode!(T0, T1, T2, T3, T4, T5);
tuple_encode!(T0, T1, T2, T3, T4, T5, T6);
tuple_encode!(T0, T1, T2, T3, T4, T5, T6, T7);

impl Encodable for sha256d::Hash {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        self.as_byte_array().consensus_encode(w)
    }
}

impl Decodable for sha256d::Hash {
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        Ok(Self::from_byte_array(<<Self as Hash>::Bytes>::consensus_decode(r)?))
    }
}

impl Encodable for sha256::Hash {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        self.as_byte_array().consensus_encode(w)
    }
}

impl Decodable for sha256::Hash {
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        Ok(Self::from_byte_array(<<Self as Hash>::Bytes>::consensus_decode(r)?))
    }
}

impl Encodable for TapLeafHash {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        self.as_byte_array().consensus_encode(w)
    }
}

impl Decodable for TapLeafHash {
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, Error> {
        Ok(Self::from_byte_array(<<Self as Hash>::Bytes>::consensus_decode(r)?))
    }
}

#[cfg(test)]
mod tests {
    use core::mem::discriminant;

    use super::*;

    #[test]
    fn serialize_int_test() {
        // bool
        assert_eq!(serialize(&false), vec![0u8]);
        assert_eq!(serialize(&true), vec![1u8]);
        // u8
        assert_eq!(serialize(&1u8), vec![1u8]);
        assert_eq!(serialize(&0u8), vec![0u8]);
        assert_eq!(serialize(&255u8), vec![255u8]);
        // u16
        assert_eq!(serialize(&1u16), vec![1u8, 0]);
        assert_eq!(serialize(&256u16), vec![0u8, 1]);
        assert_eq!(serialize(&5000u16), vec![136u8, 19]);
        // u32
        assert_eq!(serialize(&1u32), vec![1u8, 0, 0, 0]);
        assert_eq!(serialize(&256u32), vec![0u8, 1, 0, 0]);
        assert_eq!(serialize(&5000u32), vec![136u8, 19, 0, 0]);
        assert_eq!(serialize(&500000u32), vec![32u8, 161, 7, 0]);
        assert_eq!(serialize(&168430090u32), vec![10u8, 10, 10, 10]);
        // i32
        assert_eq!(serialize(&-1i32), vec![255u8, 255, 255, 255]);
        assert_eq!(serialize(&-256i32), vec![0u8, 255, 255, 255]);
        assert_eq!(serialize(&-5000i32), vec![120u8, 236, 255, 255]);
        assert_eq!(serialize(&-500000i32), vec![224u8, 94, 248, 255]);
        assert_eq!(serialize(&-168430090i32), vec![246u8, 245, 245, 245]);
        assert_eq!(serialize(&1i32), vec![1u8, 0, 0, 0]);
        assert_eq!(serialize(&256i32), vec![0u8, 1, 0, 0]);
        assert_eq!(serialize(&5000i32), vec![136u8, 19, 0, 0]);
        assert_eq!(serialize(&500000i32), vec![32u8, 161, 7, 0]);
        assert_eq!(serialize(&168430090i32), vec![10u8, 10, 10, 10]);
        // u64
        assert_eq!(serialize(&1u64), vec![1u8, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&256u64), vec![0u8, 1, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&5000u64), vec![136u8, 19, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&500000u64), vec![32u8, 161, 7, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&723401728380766730u64), vec![10u8, 10, 10, 10, 10, 10, 10, 10]);
        // i64
        assert_eq!(serialize(&-1i64), vec![255u8, 255, 255, 255, 255, 255, 255, 255]);
        assert_eq!(serialize(&-256i64), vec![0u8, 255, 255, 255, 255, 255, 255, 255]);
        assert_eq!(serialize(&-5000i64), vec![120u8, 236, 255, 255, 255, 255, 255, 255]);
        assert_eq!(serialize(&-500000i64), vec![224u8, 94, 248, 255, 255, 255, 255, 255]);
        assert_eq!(
            serialize(&-723401728380766730i64),
            vec![246u8, 245, 245, 245, 245, 245, 245, 245]
        );
        assert_eq!(serialize(&1i64), vec![1u8, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&256i64), vec![0u8, 1, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&5000i64), vec![136u8, 19, 0, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&500000i64), vec![32u8, 161, 7, 0, 0, 0, 0, 0]);
        assert_eq!(serialize(&723401728380766730i64), vec![10u8, 10, 10, 10, 10, 10, 10, 10]);
    }

    #[test]
    fn serialize_varint_test() {
        assert_eq!(serialize(&VarInt(10)), vec![10u8]);
        assert_eq!(serialize(&VarInt(0xFC)), vec![0xFCu8]);
        assert_eq!(serialize(&VarInt(0xFD)), vec![0xFDu8, 0xFD, 0]);
        assert_eq!(serialize(&VarInt(0xFFF)), vec![0xFDu8, 0xFF, 0xF]);
        assert_eq!(serialize(&VarInt(0xF0F0F0F)), vec![0xFEu8, 0xF, 0xF, 0xF, 0xF]);
        assert_eq!(
            serialize(&VarInt(0xF0F0F0F0F0E0)),
            vec![0xFFu8, 0xE0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0, 0]
        );
        assert_eq!(
            test_varint_encode(0xFF, &0x100000000_u64.to_le_bytes()).unwrap(),
            VarInt(0x100000000)
        );
        assert_eq!(test_varint_encode(0xFE, &0x10000_u64.to_le_bytes()).unwrap(), VarInt(0x10000));
        assert_eq!(test_varint_encode(0xFD, &0xFD_u64.to_le_bytes()).unwrap(), VarInt(0xFD));

        // Test that length calc is working correctly
        test_varint_len(VarInt(0), 1);
        test_varint_len(VarInt(0xFC), 1);
        test_varint_len(VarInt(0xFD), 3);
        test_varint_len(VarInt(0xFFFF), 3);
        test_varint_len(VarInt(0x10000), 5);
        test_varint_len(VarInt(0xFFFFFFFF), 5);
        test_varint_len(VarInt(0xFFFFFFFF + 1), 9);
        test_varint_len(VarInt(u64::MAX), 9);
    }

    fn test_varint_len(varint: VarInt, expected: usize) {
        let mut encoder = vec![];
        assert_eq!(varint.consensus_encode(&mut encoder).unwrap(), expected);
        assert_eq!(varint.size(), expected);
    }

    fn test_varint_encode(n: u8, x: &[u8]) -> Result<VarInt, Error> {
        let mut input = [0u8; 9];
        input[0] = n;
        input[1..x.len() + 1].copy_from_slice(x);
        deserialize_partial::<VarInt>(&input).map(|t| t.0)
    }

    #[test]
    fn deserialize_nonminimal_vec() {
        // Check the edges for variant int
        assert_eq!(
            discriminant(
                &test_varint_encode(0xFF, &(0x100000000_u64 - 1).to_le_bytes()).unwrap_err()
            ),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&test_varint_encode(0xFE, &(0x10000_u64 - 1).to_le_bytes()).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&test_varint_encode(0xFD, &(0xFD_u64 - 1).to_le_bytes()).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );

        assert_eq!(
            discriminant(&deserialize::<Vec<u8>>(&[0xfd, 0x00, 0x00]).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&deserialize::<Vec<u8>>(&[0xfd, 0xfc, 0x00]).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&deserialize::<Vec<u8>>(&[0xfd, 0xfc, 0x00]).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&deserialize::<Vec<u8>>(&[0xfe, 0xff, 0x00, 0x00, 0x00]).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(&deserialize::<Vec<u8>>(&[0xfe, 0xff, 0xff, 0x00, 0x00]).unwrap_err()),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(
                &deserialize::<Vec<u8>>(&[0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
                    .unwrap_err()
            ),
            discriminant(&Error::NonMinimalVarInt)
        );
        assert_eq!(
            discriminant(
                &deserialize::<Vec<u8>>(&[0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00])
                    .unwrap_err()
            ),
            discriminant(&Error::NonMinimalVarInt)
        );

        let mut vec_256 = vec![0; 259];
        vec_256[0] = 0xfd;
        vec_256[1] = 0x00;
        vec_256[2] = 0x01;
        assert!(deserialize::<Vec<u8>>(&vec_256).is_ok());

        let mut vec_253 = vec![0; 256];
        vec_253[0] = 0xfd;
        vec_253[1] = 0xfd;
        vec_253[2] = 0x00;
        assert!(deserialize::<Vec<u8>>(&vec_253).is_ok());
    }

    #[test]
    fn serialize_checkeddata_test() {
        let cd = CheckedData::new(vec![1u8, 2, 3, 4, 5]);
        assert_eq!(serialize(&cd), vec![5, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]);
    }

    #[test]
    fn serialize_vector_test() {
        assert_eq!(serialize(&vec![1u8, 2, 3]), vec![3u8, 1, 2, 3]);
    }

    #[test]
    fn serialize_strbuf_test() {
        assert_eq!(serialize(&"Andrew".to_string()), vec![6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]);
    }

    #[test]
    fn deserialize_int_test() {
        // bool
        assert!((deserialize(&[58u8, 0]) as Result<bool, _>).is_err());
        assert_eq!(deserialize(&[58u8]).ok(), Some(true));
        assert_eq!(deserialize(&[1u8]).ok(), Some(true));
        assert_eq!(deserialize(&[0u8]).ok(), Some(false));
        assert!((deserialize(&[0u8, 1]) as Result<bool, _>).is_err());

        // u8
        assert_eq!(deserialize(&[58u8]).ok(), Some(58u8));

        // u16
        assert_eq!(deserialize(&[0x01u8, 0x02]).ok(), Some(0x0201u16));
        assert_eq!(deserialize(&[0xABu8, 0xCD]).ok(), Some(0xCDABu16));
        assert_eq!(deserialize(&[0xA0u8, 0x0D]).ok(), Some(0xDA0u16));
        let failure16: Result<u16, _> = deserialize(&[1u8]);
        assert!(failure16.is_err());

        // i16
        assert_eq!(deserialize(&[0x32_u8, 0xF4]).ok(), Some(-0x0bce_i16));
        assert_eq!(deserialize(&[0xFF_u8, 0xFE]).ok(), Some(-0x0101_i16));
        assert_eq!(deserialize(&[0x00_u8, 0x00]).ok(), Some(-0_i16));
        assert_eq!(deserialize(&[0xFF_u8, 0xFA]).ok(), Some(-0x0501_i16));

        // u32
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0]).ok(), Some(0xCDABu32));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD]).ok(), Some(0xCDAB0DA0u32));

        let failure32: Result<u32, _> = deserialize(&[1u8, 2, 3]);
        assert!(failure32.is_err());

        // i32
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0]).ok(), Some(0xCDABi32));
        assert_eq!(deserialize(&[0xA0u8, 0x0D, 0xAB, 0x2D]).ok(), Some(0x2DAB0DA0i32));

        assert_eq!(deserialize(&[0, 0, 0, 0]).ok(), Some(-0_i32));
        assert_eq!(deserialize(&[0, 0, 0, 0]).ok(), Some(0_i32));

        assert_eq!(deserialize(&[0xFF, 0xFF, 0xFF, 0xFF]).ok(), Some(-1_i32));
        assert_eq!(deserialize(&[0xFE, 0xFF, 0xFF, 0xFF]).ok(), Some(-2_i32));
        assert_eq!(deserialize(&[0x01, 0xFF, 0xFF, 0xFF]).ok(), Some(-255_i32));
        assert_eq!(deserialize(&[0x02, 0xFF, 0xFF, 0xFF]).ok(), Some(-254_i32));

        let failurei32: Result<i32, _> = deserialize(&[1u8, 2, 3]);
        assert!(failurei32.is_err());

        // u64
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]).ok(), Some(0xCDABu64));
        assert_eq!(
            deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]).ok(),
            Some(0x99000099CDAB0DA0u64)
        );
        let failure64: Result<u64, _> = deserialize(&[1u8, 2, 3, 4, 5, 6, 7]);
        assert!(failure64.is_err());

        // i64
        assert_eq!(deserialize(&[0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]).ok(), Some(0xCDABi64));
        assert_eq!(
            deserialize(&[0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]).ok(),
            Some(-0x66ffff663254f260i64)
        );
        assert_eq!(
            deserialize(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]).ok(),
            Some(-1_i64)
        );
        assert_eq!(
            deserialize(&[0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]).ok(),
            Some(-2_i64)
        );
        assert_eq!(
            deserialize(&[0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]).ok(),
            Some(-255_i64)
        );
        assert_eq!(
            deserialize(&[0x02, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]).ok(),
            Some(-254_i64)
        );

        let failurei64: Result<i64, _> = deserialize(&[1u8, 2, 3, 4, 5, 6, 7]);
        assert!(failurei64.is_err());
    }

    #[test]
    fn deserialize_vec_test() {
        assert_eq!(deserialize(&[3u8, 2, 3, 4]).ok(), Some(vec![2u8, 3, 4]));
        assert!((deserialize(&[4u8, 2, 3, 4, 5, 6]) as Result<Vec<u8>, _>).is_err());
        // found by cargo fuzz
        assert!(deserialize::<Vec<u64>>(&[
            0xff, 0xff, 0xff, 0xff, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b, 0x6b,
            0x6b, 0x6b, 0xa, 0xa, 0x3a
        ])
        .is_err());

        let rand_io_err = Error::Io(io::Error::new(io::ErrorKind::Other, ""));

        // Check serialization that `if len > MAX_VEC_SIZE {return err}` isn't inclusive,
        // by making sure it fails with IO Error and not an `OversizedVectorAllocation` Error.
        let err =
            deserialize::<CheckedData>(&serialize(&(super::MAX_VEC_SIZE as u32))).unwrap_err();
        assert_eq!(discriminant(&err), discriminant(&rand_io_err));

        test_len_is_max_vec::<u8>();
        test_len_is_max_vec::<BlockHash>();
        test_len_is_max_vec::<FilterHash>();
        test_len_is_max_vec::<TxMerkleNode>();
        test_len_is_max_vec::<Transaction>();
        test_len_is_max_vec::<TxOut>();
        test_len_is_max_vec::<TxIn>();
        test_len_is_max_vec::<Vec<u8>>();
        test_len_is_max_vec::<u64>();
        #[cfg(feature = "std")]
        test_len_is_max_vec::<(u32, Address)>();
        #[cfg(feature = "std")]
        test_len_is_max_vec::<Inventory>();
    }

    fn test_len_is_max_vec<T>()
    where
        Vec<T>: Decodable,
        T: fmt::Debug,
    {
        let rand_io_err = Error::Io(io::Error::new(io::ErrorKind::Other, ""));
        let varint = VarInt((super::MAX_VEC_SIZE / mem::size_of::<T>()) as u64);
        let err = deserialize::<Vec<T>>(&serialize(&varint)).unwrap_err();
        assert_eq!(discriminant(&err), discriminant(&rand_io_err));
    }

    #[test]
    fn deserialize_strbuf_test() {
        assert_eq!(
            deserialize(&[6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]).ok(),
            Some("Andrew".to_string())
        );
        assert_eq!(
            deserialize(&[6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]).ok(),
            Some(Cow::Borrowed("Andrew"))
        );
    }

    #[test]
    fn deserialize_checkeddata_test() {
        let cd: Result<CheckedData, _> =
            deserialize(&[5u8, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]);
        assert_eq!(cd.ok(), Some(CheckedData::new(vec![1u8, 2, 3, 4, 5])));
    }

    #[test]
    fn limit_read_test() {
        let witness = vec![vec![0u8; 3_999_999]; 2];
        let ser = serialize(&witness);
        let mut reader = io::Cursor::new(ser);
        let err = Vec::<Vec<u8>>::consensus_decode(&mut reader);
        assert!(err.is_err());
    }

    #[test]
    #[cfg(feature = "rand-std")]
    fn serialization_round_trips() {
        use secp256k1::rand::{thread_rng, Rng};

        macro_rules! round_trip {
            ($($val_type:ty),*) => {
                $(
                    let r: $val_type = thread_rng().gen();
                    assert_eq!(deserialize::<$val_type>(&serialize(&r)).unwrap(), r);
                )*
            };
        }
        macro_rules! round_trip_bytes {
            ($(($val_type:ty, $data:expr)),*) => {
                $(
                    thread_rng().fill(&mut $data[..]);
                    assert_eq!(deserialize::<$val_type>(&serialize(&$data)).unwrap()[..], $data[..]);
                )*
            };
        }

        let mut data = Vec::with_capacity(256);
        let mut data64 = Vec::with_capacity(256);
        for _ in 0..10 {
            round_trip! {bool, i8, u8, i16, u16, i32, u32, i64, u64,
            (bool, i8, u16, i32), (u64, i64, u32, i32, u16, i16), (i8, u8, i16, u16, i32, u32, i64, u64),
            [u8; 2], [u8; 4], [u8; 8], [u8; 12], [u8; 16], [u8; 32]};

            data.clear();
            data64.clear();
            let len = thread_rng().gen_range(1..256);
            data.resize(len, 0u8);
            data64.resize(len, 0u64);
            let mut arr33 = [0u8; 33];
            let mut arr16 = [0u16; 8];
            round_trip_bytes! {(Vec<u8>, data), ([u8; 33], arr33), ([u16; 8], arr16), (Vec<u64>, data64)};
        }
    }

    #[test]
    fn test_read_bytes_from_finite_reader() {
        let data: Vec<u8> = (0..10).collect();

        for chunk_size in 1..20 {
            assert_eq!(
                read_bytes_from_finite_reader(
                    &mut io::Cursor::new(&data),
                    ReadBytesFromFiniteReaderOpts { len: data.len(), chunk_size }
                )
                .unwrap(),
                data
            );
        }
    }

    #[test]
    fn deserialize_tx_hex() {
        let hex = include_str!("../../tests/data/previous_tx_0_hex"); // An arbitrary transaction.
        assert!(deserialize_hex::<Transaction>(hex).is_ok())
    }

    #[test]
    fn deserialize_tx_hex_too_many_bytes() {
        use crate::consensus::DecodeError;

        let mut hex = include_str!("../../tests/data/previous_tx_0_hex").to_string(); // An arbitrary transaction.
        hex.push_str("abcdef");
        assert!(matches!(
            deserialize_hex::<Transaction>(&hex).unwrap_err(),
            FromHexError::Decode(DecodeError::TooManyBytes)
        ));
    }
}