use core::fmt::{self, Write as _};
use core::ops;
use core::str::FromStr;
use hashes::{hash160, Hash};
use hex::{FromHex, HexToArrayError};
use internals::array_vec::ArrayVec;
use internals::write_err;
use io::{Read, Write};
use crate::blockdata::script::ScriptBuf;
use crate::crypto::ecdsa;
use crate::internal_macros::impl_asref_push_bytes;
use crate::network::NetworkKind;
use crate::prelude::*;
use crate::taproot::{TapNodeHash, TapTweakHash};
#[rustfmt::skip] pub use secp256k1::{constants, Keypair, Parity, Secp256k1, Verification, XOnlyPublicKey};
#[cfg(feature = "rand-std")]
pub use secp256k1::rand;
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
pub compressed: bool,
pub inner: secp256k1::PublicKey,
}
impl PublicKey {
pub fn new(key: impl Into<secp256k1::PublicKey>) -> PublicKey {
PublicKey { compressed: true, inner: key.into() }
}
pub fn new_uncompressed(key: impl Into<secp256k1::PublicKey>) -> PublicKey {
PublicKey { compressed: false, inner: key.into() }
}
fn with_serialized<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
if self.compressed {
f(&self.inner.serialize())
} else {
f(&self.inner.serialize_uncompressed())
}
}
pub fn pubkey_hash(&self) -> PubkeyHash { self.with_serialized(PubkeyHash::hash) }
pub fn wpubkey_hash(&self) -> Result<WPubkeyHash, UncompressedPublicKeyError> {
if self.compressed {
Ok(WPubkeyHash::from_byte_array(
hash160::Hash::hash(&self.inner.serialize()).to_byte_array(),
))
} else {
Err(UncompressedPublicKeyError)
}
}
pub fn p2wpkh_script_code(&self) -> Result<ScriptBuf, UncompressedPublicKeyError> {
let key = CompressedPublicKey::try_from(*self)?;
Ok(key.p2wpkh_script_code())
}
pub fn write_into<W: Write + ?Sized>(&self, writer: &mut W) -> Result<(), io::Error> {
self.with_serialized(|bytes| writer.write_all(bytes))
}
pub fn read_from<R: Read + ?Sized>(reader: &mut R) -> Result<Self, io::Error> {
let mut bytes = [0; 65];
reader.read_exact(&mut bytes[0..1])?;
let bytes = if bytes[0] < 4 { &mut bytes[..33] } else { &mut bytes[..65] };
reader.read_exact(&mut bytes[1..])?;
Self::from_slice(bytes).map_err(|e| {
#[cfg(feature = "std")]
let reason = e;
#[cfg(not(feature = "std"))]
let reason = match e {
FromSliceError::Secp256k1(_) => "secp256k1 error",
FromSliceError::InvalidKeyPrefix(_) => "invalid key prefix",
FromSliceError::InvalidLength(_) => "invalid length",
};
io::Error::new(io::ErrorKind::InvalidData, reason)
})
}
pub fn to_bytes(self) -> Vec<u8> {
let mut buf = Vec::new();
self.write_into(&mut buf).expect("vecs don't error");
buf
}
pub fn to_sort_key(self) -> SortKey {
if self.compressed {
let buf = ArrayVec::from_slice(&self.inner.serialize());
SortKey(buf)
} else {
let buf = ArrayVec::from_slice(&self.inner.serialize_uncompressed());
SortKey(buf)
}
}
pub fn from_slice(data: &[u8]) -> Result<PublicKey, FromSliceError> {
let compressed = match data.len() {
33 => true,
65 => false,
len => {
return Err(FromSliceError::InvalidLength(len));
}
};
if !compressed && data[0] != 0x04 {
return Err(FromSliceError::InvalidKeyPrefix(data[0]));
}
Ok(PublicKey { compressed, inner: secp256k1::PublicKey::from_slice(data)? })
}
pub fn from_private_key<C: secp256k1::Signing>(
secp: &Secp256k1<C>,
sk: &PrivateKey,
) -> PublicKey {
sk.public_key(secp)
}
pub fn verify<C: secp256k1::Verification>(
&self,
secp: &Secp256k1<C>,
msg: &secp256k1::Message,
sig: &ecdsa::Signature,
) -> Result<(), secp256k1::Error> {
secp.verify_ecdsa(msg, &sig.signature, &self.inner)
}
}
impl From<secp256k1::PublicKey> for PublicKey {
fn from(pk: secp256k1::PublicKey) -> PublicKey { PublicKey::new(pk) }
}
impl From<PublicKey> for XOnlyPublicKey {
fn from(pk: PublicKey) -> XOnlyPublicKey { pk.inner.into() }
}
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct SortKey(ArrayVec<u8, 65>);
impl fmt::Display for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.with_serialized(|bytes| fmt::Display::fmt(&bytes.as_hex(), f))
}
}
impl FromStr for PublicKey {
type Err = ParsePublicKeyError;
fn from_str(s: &str) -> Result<PublicKey, ParsePublicKeyError> {
use HexToArrayError::*;
match s.len() {
66 => {
let bytes = <[u8; 33]>::from_hex(s).map_err(|e| match e {
InvalidChar(e) => ParsePublicKeyError::InvalidChar(e.invalid_char()),
InvalidLength(_) => unreachable!("length checked already"),
})?;
Ok(PublicKey::from_slice(&bytes)?)
}
130 => {
let bytes = <[u8; 65]>::from_hex(s).map_err(|e| match e {
InvalidChar(e) => ParsePublicKeyError::InvalidChar(e.invalid_char()),
InvalidLength(_) => unreachable!("length checked already"),
})?;
Ok(PublicKey::from_slice(&bytes)?)
}
len => Err(ParsePublicKeyError::InvalidHexLength(len)),
}
}
}
hashes::hash_newtype! {
pub struct PubkeyHash(hash160::Hash);
pub struct WPubkeyHash(hash160::Hash);
}
impl_asref_push_bytes!(PubkeyHash, WPubkeyHash);
impl From<PublicKey> for PubkeyHash {
fn from(key: PublicKey) -> PubkeyHash { key.pubkey_hash() }
}
impl From<&PublicKey> for PubkeyHash {
fn from(key: &PublicKey) -> PubkeyHash { key.pubkey_hash() }
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CompressedPublicKey(pub secp256k1::PublicKey);
impl CompressedPublicKey {
pub fn pubkey_hash(&self) -> PubkeyHash { PubkeyHash::hash(&self.to_bytes()) }
pub fn wpubkey_hash(&self) -> WPubkeyHash {
WPubkeyHash::from_byte_array(hash160::Hash::hash(&self.to_bytes()).to_byte_array())
}
pub fn p2wpkh_script_code(&self) -> ScriptBuf {
ScriptBuf::p2wpkh_script_code(self.wpubkey_hash())
}
pub fn write_into<W: io::Write + ?Sized>(&self, writer: &mut W) -> Result<(), io::Error> {
writer.write_all(&self.to_bytes())
}
pub fn read_from<R: io::Read + ?Sized>(reader: &mut R) -> Result<Self, io::Error> {
let mut bytes = [0; 33];
reader.read_exact(&mut bytes)?;
#[allow(unused_variables)] Self::from_slice(&bytes).map_err(|e| {
#[cfg(feature = "std")]
let reason = e;
#[cfg(not(feature = "std"))]
let reason = "secp256k1 error";
io::Error::new(io::ErrorKind::InvalidData, reason)
})
}
pub fn to_bytes(&self) -> [u8; 33] { self.0.serialize() }
pub fn from_slice(data: &[u8]) -> Result<Self, secp256k1::Error> {
secp256k1::PublicKey::from_slice(data).map(CompressedPublicKey)
}
pub fn from_private_key<C: secp256k1::Signing>(
secp: &Secp256k1<C>,
sk: &PrivateKey,
) -> Result<Self, UncompressedPublicKeyError> {
sk.public_key(secp).try_into()
}
pub fn verify<C: secp256k1::Verification>(
&self,
secp: &Secp256k1<C>,
msg: &secp256k1::Message,
sig: &ecdsa::Signature,
) -> Result<(), secp256k1::Error> {
Ok(secp.verify_ecdsa(msg, &sig.signature, &self.0)?)
}
}
impl fmt::Display for CompressedPublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::LowerHex::fmt(&self.to_bytes().as_hex(), f)
}
}
impl FromStr for CompressedPublicKey {
type Err = ParseCompressedPublicKeyError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
CompressedPublicKey::from_slice(&<[u8; 33]>::from_hex(s)?).map_err(Into::into)
}
}
impl TryFrom<PublicKey> for CompressedPublicKey {
type Error = UncompressedPublicKeyError;
fn try_from(value: PublicKey) -> Result<Self, Self::Error> {
if value.compressed {
Ok(CompressedPublicKey(value.inner))
} else {
Err(UncompressedPublicKeyError)
}
}
}
impl From<CompressedPublicKey> for PublicKey {
fn from(value: CompressedPublicKey) -> Self { PublicKey::new(value.0) }
}
impl From<CompressedPublicKey> for XOnlyPublicKey {
fn from(pk: CompressedPublicKey) -> Self { pk.0.into() }
}
impl From<CompressedPublicKey> for PubkeyHash {
fn from(key: CompressedPublicKey) -> Self { key.pubkey_hash() }
}
impl From<&CompressedPublicKey> for PubkeyHash {
fn from(key: &CompressedPublicKey) -> Self { key.pubkey_hash() }
}
impl From<CompressedPublicKey> for WPubkeyHash {
fn from(key: CompressedPublicKey) -> Self { key.wpubkey_hash() }
}
impl From<&CompressedPublicKey> for WPubkeyHash {
fn from(key: &CompressedPublicKey) -> Self { key.wpubkey_hash() }
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct PrivateKey {
pub compressed: bool,
pub network: NetworkKind,
pub inner: secp256k1::SecretKey,
}
impl PrivateKey {
#[cfg(feature = "rand-std")]
pub fn generate(network: impl Into<NetworkKind>) -> PrivateKey {
let secret_key = secp256k1::SecretKey::new(&mut rand::thread_rng());
PrivateKey::new(secret_key, network.into())
}
pub fn new(key: secp256k1::SecretKey, network: impl Into<NetworkKind>) -> PrivateKey {
PrivateKey { compressed: true, network: network.into(), inner: key }
}
pub fn new_uncompressed(
key: secp256k1::SecretKey,
network: impl Into<NetworkKind>,
) -> PrivateKey {
PrivateKey { compressed: false, network: network.into(), inner: key }
}
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey {
compressed: self.compressed,
inner: secp256k1::PublicKey::from_secret_key(secp, &self.inner),
}
}
pub fn to_bytes(self) -> Vec<u8> { self.inner[..].to_vec() }
pub fn from_slice(
data: &[u8],
network: impl Into<NetworkKind>,
) -> Result<PrivateKey, secp256k1::Error> {
Ok(PrivateKey::new(secp256k1::SecretKey::from_slice(data)?, network))
}
#[rustfmt::skip]
pub fn fmt_wif(&self, fmt: &mut dyn fmt::Write) -> fmt::Result {
let mut ret = [0; 34];
ret[0] = if self.network.is_mainnet() { 128 } else { 239 };
ret[1..33].copy_from_slice(&self.inner[..]);
let privkey = if self.compressed {
ret[33] = 1;
base58::encode_check(&ret[..])
} else {
base58::encode_check(&ret[..33])
};
fmt.write_str(&privkey)
}
pub fn to_wif(self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
buf.shrink_to_fit();
buf
}
pub fn from_wif(wif: &str) -> Result<PrivateKey, FromWifError> {
let data = base58::decode_check(wif)?;
let compressed = match data.len() {
33 => false,
34 => true,
length => {
return Err(InvalidBase58PayloadLengthError { length }.into());
}
};
let network = match data[0] {
128 => NetworkKind::Main,
239 => NetworkKind::Test,
invalid => {
return Err(InvalidAddressVersionError { invalid }.into());
}
};
Ok(PrivateKey {
compressed,
network,
inner: secp256k1::SecretKey::from_slice(&data[1..33])?,
})
}
}
impl fmt::Display for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.fmt_wif(f) }
}
impl FromStr for PrivateKey {
type Err = FromWifError;
fn from_str(s: &str) -> Result<PrivateKey, FromWifError> { PrivateKey::from_wif(s) }
}
impl ops::Index<ops::RangeFull> for PrivateKey {
type Output = [u8];
fn index(&self, _: ops::RangeFull) -> &[u8] { &self.inner[..] }
}
#[cfg(feature = "serde")]
impl serde::Serialize for PrivateKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
s.collect_str(self)
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for PrivateKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<PrivateKey, D::Error> {
struct WifVisitor;
impl<'de> serde::de::Visitor<'de> for WifVisitor {
type Value = PrivateKey;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
formatter.write_str("an ASCII WIF string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
if let Ok(s) = core::str::from_utf8(v) {
PrivateKey::from_str(s).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
PrivateKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(WifVisitor)
}
}
#[cfg(feature = "serde")]
#[allow(clippy::collapsible_else_if)] impl serde::Serialize for PublicKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
self.with_serialized(|bytes| s.serialize_bytes(bytes))
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for PublicKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
if d.is_human_readable() {
struct HexVisitor;
impl<'de> serde::de::Visitor<'de> for HexVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
formatter.write_str("an ASCII hex string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
if let Ok(hex) = core::str::from_utf8(v) {
PublicKey::from_str(hex).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
PublicKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> serde::de::Visitor<'de> for BytesVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
formatter.write_str("a bytestring")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
PublicKey::from_slice(v).map_err(E::custom)
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for CompressedPublicKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
s.serialize_bytes(&self.to_bytes())
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for CompressedPublicKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
if d.is_human_readable() {
struct HexVisitor;
impl<'de> serde::de::Visitor<'de> for HexVisitor {
type Value = CompressedPublicKey;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
formatter.write_str("a 66 digits long ASCII hex string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
if let Ok(hex) = core::str::from_utf8(v) {
CompressedPublicKey::from_str(hex).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
CompressedPublicKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> serde::de::Visitor<'de> for BytesVisitor {
type Value = CompressedPublicKey;
fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
formatter.write_str("a bytestring")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
CompressedPublicKey::from_slice(v).map_err(E::custom)
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
pub type UntweakedPublicKey = XOnlyPublicKey;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
#[cfg_attr(feature = "serde", serde(transparent))]
pub struct TweakedPublicKey(XOnlyPublicKey);
impl fmt::LowerHex for TweakedPublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(&self.0, f) }
}
impl fmt::Display for TweakedPublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
}
pub type UntweakedKeypair = Keypair;
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
#[cfg_attr(feature = "serde", serde(transparent))]
pub struct TweakedKeypair(Keypair);
pub trait TapTweak {
type TweakedAux;
type TweakedKey;
fn tap_tweak<C: Verification>(
self,
secp: &Secp256k1<C>,
merkle_root: Option<TapNodeHash>,
) -> Self::TweakedAux;
fn dangerous_assume_tweaked(self) -> Self::TweakedKey;
}
impl TapTweak for UntweakedPublicKey {
type TweakedAux = (TweakedPublicKey, Parity);
type TweakedKey = TweakedPublicKey;
fn tap_tweak<C: Verification>(
self,
secp: &Secp256k1<C>,
merkle_root: Option<TapNodeHash>,
) -> (TweakedPublicKey, Parity) {
let tweak = TapTweakHash::from_key_and_tweak(self, merkle_root).to_scalar();
let (output_key, parity) = self.add_tweak(secp, &tweak).expect("Tap tweak failed");
debug_assert!(self.tweak_add_check(secp, &output_key, parity, tweak));
(TweakedPublicKey(output_key), parity)
}
fn dangerous_assume_tweaked(self) -> TweakedPublicKey { TweakedPublicKey(self) }
}
impl TapTweak for UntweakedKeypair {
type TweakedAux = TweakedKeypair;
type TweakedKey = TweakedKeypair;
fn tap_tweak<C: Verification>(
self,
secp: &Secp256k1<C>,
merkle_root: Option<TapNodeHash>,
) -> TweakedKeypair {
let (pubkey, _parity) = XOnlyPublicKey::from_keypair(&self);
let tweak = TapTweakHash::from_key_and_tweak(pubkey, merkle_root).to_scalar();
let tweaked = self.add_xonly_tweak(secp, &tweak).expect("Tap tweak failed");
TweakedKeypair(tweaked)
}
fn dangerous_assume_tweaked(self) -> TweakedKeypair { TweakedKeypair(self) }
}
impl TweakedPublicKey {
#[inline]
pub fn from_keypair(keypair: TweakedKeypair) -> Self {
let (xonly, _parity) = keypair.0.x_only_public_key();
TweakedPublicKey(xonly)
}
#[inline]
pub fn dangerous_assume_tweaked(key: XOnlyPublicKey) -> TweakedPublicKey {
TweakedPublicKey(key)
}
pub fn to_inner(self) -> XOnlyPublicKey { self.0 }
#[inline]
pub fn serialize(&self) -> [u8; constants::SCHNORR_PUBLIC_KEY_SIZE] { self.0.serialize() }
}
impl TweakedKeypair {
#[inline]
pub fn dangerous_assume_tweaked(pair: Keypair) -> TweakedKeypair { TweakedKeypair(pair) }
#[inline]
pub fn to_inner(self) -> Keypair { self.0 }
#[inline]
pub fn public_parts(&self) -> (TweakedPublicKey, Parity) {
let (xonly, parity) = self.0.x_only_public_key();
(TweakedPublicKey(xonly), parity)
}
}
impl From<TweakedPublicKey> for XOnlyPublicKey {
#[inline]
fn from(pair: TweakedPublicKey) -> Self { pair.0 }
}
impl From<TweakedKeypair> for Keypair {
#[inline]
fn from(pair: TweakedKeypair) -> Self { pair.0 }
}
impl From<TweakedKeypair> for TweakedPublicKey {
#[inline]
fn from(pair: TweakedKeypair) -> Self { TweakedPublicKey::from_keypair(pair) }
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum FromSliceError {
InvalidKeyPrefix(u8),
Secp256k1(secp256k1::Error),
InvalidLength(usize),
}
internals::impl_from_infallible!(FromSliceError);
impl fmt::Display for FromSliceError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use FromSliceError::*;
match self {
Secp256k1(e) => write_err!(f, "secp256k1"; e),
InvalidKeyPrefix(b) => write!(f, "key prefix invalid: {}", b),
InvalidLength(got) => write!(f, "slice length should be 33 or 65 bytes, got: {}", got),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromSliceError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use FromSliceError::*;
match *self {
Secp256k1(ref e) => Some(e),
InvalidKeyPrefix(_) | InvalidLength(_) => None,
}
}
}
impl From<secp256k1::Error> for FromSliceError {
fn from(e: secp256k1::Error) -> Self { Self::Secp256k1(e) }
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum FromWifError {
Base58(base58::Error),
InvalidBase58PayloadLength(InvalidBase58PayloadLengthError),
InvalidAddressVersion(InvalidAddressVersionError),
Secp256k1(secp256k1::Error),
}
internals::impl_from_infallible!(FromWifError);
impl fmt::Display for FromWifError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use FromWifError::*;
match *self {
Base58(ref e) => write_err!(f, "invalid base58"; e),
InvalidBase58PayloadLength(ref e) =>
write_err!(f, "decoded base58 data was an invalid length"; e),
InvalidAddressVersion(ref e) =>
write_err!(f, "decoded base58 data contained an invalid address version btye"; e),
Secp256k1(ref e) => write_err!(f, "private key validation failed"; e),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromWifError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use FromWifError::*;
match *self {
Base58(ref e) => Some(e),
InvalidBase58PayloadLength(ref e) => Some(e),
InvalidAddressVersion(ref e) => Some(e),
Secp256k1(ref e) => Some(e),
}
}
}
impl From<base58::Error> for FromWifError {
fn from(e: base58::Error) -> Self { Self::Base58(e) }
}
impl From<secp256k1::Error> for FromWifError {
fn from(e: secp256k1::Error) -> Self { Self::Secp256k1(e) }
}
impl From<InvalidBase58PayloadLengthError> for FromWifError {
fn from(e: InvalidBase58PayloadLengthError) -> FromWifError {
Self::InvalidBase58PayloadLength(e)
}
}
impl From<InvalidAddressVersionError> for FromWifError {
fn from(e: InvalidAddressVersionError) -> FromWifError { Self::InvalidAddressVersion(e) }
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ParsePublicKeyError {
Encoding(FromSliceError),
InvalidChar(u8),
InvalidHexLength(usize),
}
internals::impl_from_infallible!(ParsePublicKeyError);
impl fmt::Display for ParsePublicKeyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use ParsePublicKeyError::*;
match self {
Encoding(e) => write_err!(f, "string error"; e),
InvalidChar(char) => write!(f, "hex error {}", char),
InvalidHexLength(got) =>
write!(f, "pubkey string should be 66 or 130 digits long, got: {}", got),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParsePublicKeyError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use ParsePublicKeyError::*;
match self {
Encoding(e) => Some(e),
InvalidChar(_) | InvalidHexLength(_) => None,
}
}
}
impl From<FromSliceError> for ParsePublicKeyError {
fn from(e: FromSliceError) -> Self { Self::Encoding(e) }
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ParseCompressedPublicKeyError {
Secp256k1(secp256k1::Error),
Hex(hex::HexToArrayError),
}
internals::impl_from_infallible!(ParseCompressedPublicKeyError);
impl fmt::Display for ParseCompressedPublicKeyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use ParseCompressedPublicKeyError::*;
match self {
Secp256k1(e) => write_err!(f, "secp256k1 error"; e),
Hex(e) => write_err!(f, "invalid hex"; e),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParseCompressedPublicKeyError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use ParseCompressedPublicKeyError::*;
match self {
Secp256k1(e) => Some(e),
Hex(e) => Some(e),
}
}
}
impl From<secp256k1::Error> for ParseCompressedPublicKeyError {
fn from(e: secp256k1::Error) -> Self { Self::Secp256k1(e) }
}
impl From<hex::HexToArrayError> for ParseCompressedPublicKeyError {
fn from(e: hex::HexToArrayError) -> Self { Self::Hex(e) }
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub struct UncompressedPublicKeyError;
impl fmt::Display for UncompressedPublicKeyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("segwit public keys must always be compressed")
}
}
#[cfg(feature = "std")]
impl std::error::Error for UncompressedPublicKeyError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InvalidBase58PayloadLengthError {
pub(crate) length: usize,
}
impl InvalidBase58PayloadLengthError {
pub fn invalid_base58_payload_length(&self) -> usize { self.length }
}
impl fmt::Display for InvalidBase58PayloadLengthError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "decoded base58 data was an invalid length: {} (expected 33 or 34)", self.length)
}
}
#[cfg(feature = "std")]
impl std::error::Error for InvalidBase58PayloadLengthError {}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InvalidAddressVersionError {
pub(crate) invalid: u8,
}
impl InvalidAddressVersionError {
pub fn invalid_address_version(&self) -> u8 { self.invalid }
}
impl fmt::Display for InvalidAddressVersionError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "invalid address version in decoded base58 data {}", self.invalid)
}
}
#[cfg(feature = "std")]
impl std::error::Error for InvalidAddressVersionError {}
#[cfg(test)]
mod tests {
use super::*;
use crate::address::Address;
#[test]
fn test_key_derivation() {
let sk =
PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network, NetworkKind::Test);
assert!(sk.compressed);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = Address::p2pkh(sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
let sk =
PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network, NetworkKind::Main);
assert!(!sk.compressed);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let mut pk = sk.public_key(&secp);
assert!(!pk.compressed);
assert_eq!(&pk.to_string(), "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133");
assert_eq!(pk, PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap());
let addr = Address::p2pkh(pk, sk.network);
assert_eq!(&addr.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
pk.compressed = true;
assert_eq!(
&pk.to_string(),
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af"
);
assert_eq!(
pk,
PublicKey::from_str(
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af"
)
.unwrap()
);
}
#[test]
fn test_pubkey_hash() {
let pk = PublicKey::from_str(
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af",
)
.unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.pubkey_hash().to_string(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.pubkey_hash().to_string(), "ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a");
}
#[test]
fn test_wpubkey_hash() {
let pk = PublicKey::from_str(
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af",
)
.unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(
pk.wpubkey_hash().unwrap().to_string(),
"9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4"
);
assert!(upk.wpubkey_hash().is_err());
}
#[cfg(feature = "serde")]
#[test]
fn test_key_serde() {
use serde_test::{assert_tokens, Configure, Token};
static KEY_WIF: &str = "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy";
static PK_STR: &str = "039b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef";
static PK_STR_U: &str = "\
04\
9b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef\
87288ed73ce47fc4f5c79d19ebfa57da7cff3aff6e819e4ee971d86b5e61875d\
";
#[rustfmt::skip]
static PK_BYTES: [u8; 33] = [
0x03,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
];
#[rustfmt::skip]
static PK_BYTES_U: [u8; 65] = [
0x04,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4,
0xf5, 0xc7, 0x9d, 0x19, 0xeb, 0xfa, 0x57, 0xda,
0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81, 0x9e, 0x4e,
0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
];
let s = Secp256k1::new();
let sk = PrivateKey::from_str(KEY_WIF).unwrap();
let pk = PublicKey::from_private_key(&s, &sk);
let pk_u = PublicKey { inner: pk.inner, compressed: false };
assert_tokens(&sk, &[Token::BorrowedStr(KEY_WIF)]);
assert_tokens(&pk.compact(), &[Token::BorrowedBytes(&PK_BYTES[..])]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk_u.compact(), &[Token::BorrowedBytes(&PK_BYTES_U[..])]);
assert_tokens(&pk_u.readable(), &[Token::BorrowedStr(PK_STR_U)]);
}
fn random_key(mut seed: u8) -> PublicKey {
loop {
let mut data = [0; 65];
for byte in &mut data[..] {
*byte = seed;
seed = seed.wrapping_mul(41).wrapping_add(43);
}
if data[0] % 2 == 0 {
data[0] = 4;
if let Ok(key) = PublicKey::from_slice(&data[..]) {
return key;
}
} else {
data[0] = 2 + (data[0] >> 7);
if let Ok(key) = PublicKey::from_slice(&data[..33]) {
return key;
}
}
}
}
#[test]
fn pubkey_read_write() {
const N_KEYS: usize = 20;
let keys: Vec<_> = (0..N_KEYS).map(|i| random_key(i as u8)).collect();
let mut v = vec![];
for k in &keys {
k.write_into(&mut v).expect("writing into vec");
}
let mut reader = v.as_slice();
let mut dec_keys = vec![];
for _ in 0..N_KEYS {
dec_keys.push(PublicKey::read_from(&mut reader).expect("reading from vec"));
}
assert_eq!(keys, dec_keys);
assert!(PublicKey::read_from(&mut reader).is_err());
let mut empty: &[u8] = &[];
assert!(PublicKey::read_from(&mut empty).is_err());
assert!(PublicKey::read_from(&mut &[0; 33][..]).is_err());
assert!(PublicKey::read_from(&mut &[2; 32][..]).is_err());
assert!(PublicKey::read_from(&mut &[0; 65][..]).is_err());
assert!(PublicKey::read_from(&mut &[4; 64][..]).is_err());
}
#[test]
fn pubkey_to_sort_key() {
let key1 = PublicKey::from_str(
"02ff12471208c14bd580709cb2358d98975247d8765f92bc25eab3b2763ed605f8",
)
.unwrap();
let key2 = PublicKey { inner: key1.inner, compressed: false };
let arrayvec1 = ArrayVec::from_slice(
&<[u8; 33]>::from_hex(
"02ff12471208c14bd580709cb2358d98975247d8765f92bc25eab3b2763ed605f8",
)
.unwrap(),
);
let expected1 = SortKey(arrayvec1);
let arrayvec2 = ArrayVec::from_slice(&<[u8; 65]>::from_hex(
"04ff12471208c14bd580709cb2358d98975247d8765f92bc25eab3b2763ed605f81794e7f3d5e420641a3bc690067df5541470c966cbca8c694bf39aa16d836918",
).unwrap());
let expected2 = SortKey(arrayvec2);
assert_eq!(key1.to_sort_key(), expected1);
assert_eq!(key2.to_sort_key(), expected2);
}
#[test]
fn pubkey_sort() {
struct Vector {
input: Vec<PublicKey>,
expect: Vec<PublicKey>,
}
let fmt =
|v: Vec<_>| v.into_iter().map(|s| PublicKey::from_str(s).unwrap()).collect::<Vec<_>>();
let vectors = vec![
Vector {
input: fmt(vec![
"02ff12471208c14bd580709cb2358d98975247d8765f92bc25eab3b2763ed605f8",
"02fe6f0a5a297eb38c391581c4413e084773ea23954d93f7753db7dc0adc188b2f",
]),
expect: fmt(vec![
"02fe6f0a5a297eb38c391581c4413e084773ea23954d93f7753db7dc0adc188b2f",
"02ff12471208c14bd580709cb2358d98975247d8765f92bc25eab3b2763ed605f8",
]),
},
Vector {
input: fmt(vec![
"02632b12f4ac5b1d1b72b2a3b508c19172de44f6f46bcee50ba33f3f9291e47ed0",
"027735a29bae7780a9755fae7a1c4374c656ac6a69ea9f3697fda61bb99a4f3e77",
"02e2cc6bd5f45edd43bebe7cb9b675f0ce9ed3efe613b177588290ad188d11b404",
]),
expect: fmt(vec![
"02632b12f4ac5b1d1b72b2a3b508c19172de44f6f46bcee50ba33f3f9291e47ed0",
"027735a29bae7780a9755fae7a1c4374c656ac6a69ea9f3697fda61bb99a4f3e77",
"02e2cc6bd5f45edd43bebe7cb9b675f0ce9ed3efe613b177588290ad188d11b404",
]),
},
Vector {
input: fmt(vec![
"030000000000000000000000000000000000004141414141414141414141414141",
"020000000000000000000000000000000000004141414141414141414141414141",
"020000000000000000000000000000000000004141414141414141414141414140",
"030000000000000000000000000000000000004141414141414141414141414140",
]),
expect: fmt(vec![
"020000000000000000000000000000000000004141414141414141414141414140",
"020000000000000000000000000000000000004141414141414141414141414141",
"030000000000000000000000000000000000004141414141414141414141414140",
"030000000000000000000000000000000000004141414141414141414141414141",
]),
},
Vector {
input: fmt(vec![
"022df8750480ad5b26950b25c7ba79d3e37d75f640f8e5d9bcd5b150a0f85014da",
"03e3818b65bcc73a7d64064106a859cc1a5a728c4345ff0b641209fba0d90de6e9",
"021f2f6e1e50cb6a953935c3601284925decd3fd21bc445712576873fb8c6ebc18",
]),
expect: fmt(vec![
"021f2f6e1e50cb6a953935c3601284925decd3fd21bc445712576873fb8c6ebc18",
"022df8750480ad5b26950b25c7ba79d3e37d75f640f8e5d9bcd5b150a0f85014da",
"03e3818b65bcc73a7d64064106a859cc1a5a728c4345ff0b641209fba0d90de6e9",
]),
},
Vector {
input: fmt(vec![
"02c690d642c1310f3a1ababad94e3930e4023c930ea472e7f37f660fe485263b88",
"0234dd69c56c36a41230d573d68adeae0030c9bc0bf26f24d3e1b64c604d293c68",
"041a181bd0e79974bd7ca552e09fc42ba9c3d5dbb3753741d6f0ab3015dbfd9a22d6b001a32f5f51ac6f2c0f35e73a6a62f59e848fa854d3d21f3f231594eeaa46",
"032b8324c93575034047a52e9bca05a46d8347046b91a032eff07d5de8d3f2730b",
"04c4b0bbb339aa236bff38dbe6a451e111972a7909a126bc424013cba2ec33bc3816753d96001fd7cba3ce5372f5c9a0d63708183033538d07b1e532fc43aaacfa",
"028e1c947c8c0b8ed021088b8e981491ac7af2b8fabebea1abdb448424c8ed75b7",
"045d753414fa292ea5b8f56e39cfb6a0287b2546231a5cb05c4b14ab4b463d171f5128148985b23eccb1e2905374873b1f09b9487f47afa6b1f2b0083ac8b4f7e8",
"03004a8a3d242d7957c0b60fb7208d386fa6a0193aabd1f3f095ffd0ac097e447b",
"04eb0db2d71ccbb0edd8fb35092cbcae2f7fa1f06d4c170804bf52007924b569a8d2d6f6bc8fd2b3caa3253fa1bb674443743bf7fb9f94f9c0b0831a252894cfa8",
"04516cde23e14f2319423b7a4a7ae48b1dadceb5e9c123198d417d10895684c42eb05e210f90ccbc72448803a22312e3f122ff2939956ccef4f7316f836295ddd5",
"038f47dcd43ba6d97fc9ed2e3bba09b175a45fac55f0683e8cf771e8ced4572354",
"04c6bec3b07586a4b085a78cbb97e9bab6f1d3c9ebf299b65dec85213c5eacd44487de86017183120bb7ea3b6c6660c5037615fe1add2a73f800cbeeae22c60438",
"03e1a1cfa9eaff604ae237b7af31ffe4c01be22eb96f3da0e62c5850dd4b4386c1",
"028d3a2d9f1b1c5c75845944f93bc183ba23aecde53f1978b8aa1b77661be6114f",
"028bde91b10013e08949a318018fedbd896534a549a278e220169ee2a36517c7aa",
"04c4b0bbb339aa236bff38dbe6a451e111972a7909a126bc424013cba2ec33bc38e98ac269ffe028345c31ac8d0a365f29c8f7e7cfccac72f84e1acd02bc554f35",
]),
expect: fmt(vec![
"0234dd69c56c36a41230d573d68adeae0030c9bc0bf26f24d3e1b64c604d293c68",
"028bde91b10013e08949a318018fedbd896534a549a278e220169ee2a36517c7aa",
"028d3a2d9f1b1c5c75845944f93bc183ba23aecde53f1978b8aa1b77661be6114f",
"028e1c947c8c0b8ed021088b8e981491ac7af2b8fabebea1abdb448424c8ed75b7",
"02c690d642c1310f3a1ababad94e3930e4023c930ea472e7f37f660fe485263b88",
"03004a8a3d242d7957c0b60fb7208d386fa6a0193aabd1f3f095ffd0ac097e447b",
"032b8324c93575034047a52e9bca05a46d8347046b91a032eff07d5de8d3f2730b",
"038f47dcd43ba6d97fc9ed2e3bba09b175a45fac55f0683e8cf771e8ced4572354",
"03e1a1cfa9eaff604ae237b7af31ffe4c01be22eb96f3da0e62c5850dd4b4386c1",
"041a181bd0e79974bd7ca552e09fc42ba9c3d5dbb3753741d6f0ab3015dbfd9a22d6b001a32f5f51ac6f2c0f35e73a6a62f59e848fa854d3d21f3f231594eeaa46",
"04516cde23e14f2319423b7a4a7ae48b1dadceb5e9c123198d417d10895684c42eb05e210f90ccbc72448803a22312e3f122ff2939956ccef4f7316f836295ddd5",
"045d753414fa292ea5b8f56e39cfb6a0287b2546231a5cb05c4b14ab4b463d171f5128148985b23eccb1e2905374873b1f09b9487f47afa6b1f2b0083ac8b4f7e8",
"04c4b0bbb339aa236bff38dbe6a451e111972a7909a126bc424013cba2ec33bc3816753d96001fd7cba3ce5372f5c9a0d63708183033538d07b1e532fc43aaacfa",
"04c4b0bbb339aa236bff38dbe6a451e111972a7909a126bc424013cba2ec33bc38e98ac269ffe028345c31ac8d0a365f29c8f7e7cfccac72f84e1acd02bc554f35",
"04c6bec3b07586a4b085a78cbb97e9bab6f1d3c9ebf299b65dec85213c5eacd44487de86017183120bb7ea3b6c6660c5037615fe1add2a73f800cbeeae22c60438",
"04eb0db2d71ccbb0edd8fb35092cbcae2f7fa1f06d4c170804bf52007924b569a8d2d6f6bc8fd2b3caa3253fa1bb674443743bf7fb9f94f9c0b0831a252894cfa8",
]),
},
];
for mut vector in vectors {
vector.input.sort_by_cached_key(|k| PublicKey::to_sort_key(*k));
assert_eq!(vector.input, vector.expect);
}
}
#[test]
#[cfg(feature = "rand-std")]
fn public_key_constructors() {
use secp256k1::rand;
let secp = Secp256k1::new();
let kp = Keypair::new(&secp, &mut rand::thread_rng());
let _ = PublicKey::new(kp);
let _ = PublicKey::new_uncompressed(kp);
}
#[test]
fn public_key_from_str_wrong_length() {
let s = "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133";
assert_eq!(s.len(), 130);
assert!(PublicKey::from_str(s).is_ok());
let s = "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af";
assert_eq!(s.len(), 66);
assert!(PublicKey::from_str(s).is_ok());
let s = "aoeusthb";
assert_eq!(s.len(), 8);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(res.unwrap_err(), ParsePublicKeyError::InvalidHexLength(8));
}
#[test]
fn public_key_from_str_invalid_str() {
let s = "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b142";
assert_eq!(s.len(), 130);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(
res.unwrap_err(),
ParsePublicKeyError::Encoding(FromSliceError::Secp256k1(
secp256k1::Error::InvalidPublicKey
))
);
let s = "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd169";
assert_eq!(s.len(), 66);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(
res.unwrap_err(),
ParsePublicKeyError::Encoding(FromSliceError::Secp256k1(
secp256k1::Error::InvalidPublicKey
))
);
let s = "062e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133";
assert_eq!(s.len(), 130);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(
res.unwrap_err(),
ParsePublicKeyError::Encoding(FromSliceError::InvalidKeyPrefix(6))
);
let s = "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b13g";
assert_eq!(s.len(), 130);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(res.unwrap_err(), ParsePublicKeyError::InvalidChar(103));
let s = "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1ag";
assert_eq!(s.len(), 66);
let res = PublicKey::from_str(s);
assert!(res.is_err());
assert_eq!(res.unwrap_err(), ParsePublicKeyError::InvalidChar(103));
}
#[test]
#[cfg(feature = "std")]
fn private_key_debug_is_obfuscated() {
let sk =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
let want =
"PrivateKey { compressed: true, network: Test, inner: SecretKey(#32014e414fdce702) }";
let got = format!("{:?}", sk);
assert_eq!(got, want)
}
#[test]
#[cfg(not(feature = "std"))]
fn private_key_debug_is_obfuscated() {
let sk =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
let want = "PrivateKey { compressed: true, network: Test, inner: SecretKey(#7217ac58fbad8880a91032107b82cb6c5422544b426c350ee005cf509f3dbf7b) }";
let got = format!("{:?}", sk);
assert_eq!(got, want)
}
}