1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// SPDX-License-Identifier: CC0-1.0

//! PSBT serialization.
//!
//! Traits to serialize PSBT values to and from raw bytes
//! according to the BIP-174 specification.
//!

use hashes::{hash160, ripemd160, sha256, sha256d, Hash};
use hex::DisplayHex;
use secp256k1::XOnlyPublicKey;

use super::map::{Input, Map, Output, PsbtSighashType};
use crate::bip32::{ChildNumber, Fingerprint, KeySource};
use crate::blockdata::script::ScriptBuf;
use crate::blockdata::transaction::{Transaction, TxOut};
use crate::blockdata::witness::Witness;
use crate::consensus::encode::{self, deserialize_partial, serialize, Decodable, Encodable};
use crate::crypto::key::PublicKey;
use crate::crypto::{ecdsa, taproot};
use crate::io::Write;
use crate::prelude::{String, Vec};
use crate::psbt::{Error, Psbt};
use crate::taproot::{
    ControlBlock, LeafVersion, TapLeafHash, TapNodeHash, TapTree, TaprootBuilder,
};
use crate::VarInt;
/// A trait for serializing a value as raw data for insertion into PSBT
/// key-value maps.
pub(crate) trait Serialize {
    /// Serialize a value as raw data.
    fn serialize(&self) -> Vec<u8>;
}

/// A trait for deserializing a value from raw data in PSBT key-value maps.
pub(crate) trait Deserialize: Sized {
    /// Deserialize a value from raw data.
    fn deserialize(bytes: &[u8]) -> Result<Self, Error>;
}

impl Psbt {
    /// Serialize a value as bytes in hex.
    pub fn serialize_hex(&self) -> String { self.serialize().to_lower_hex_string() }

    /// Serialize as raw binary data
    pub fn serialize(&self) -> Vec<u8> {
        let mut buf: Vec<u8> = Vec::new();
        self.serialize_to_writer(&mut buf).expect("Writing to Vec can't fail");
        buf
    }

    /// Serialize the PSBT into a writer.
    pub fn serialize_to_writer(&self, w: &mut impl Write) -> io::Result<usize> {
        let mut written_len = 0;

        fn write_all(w: &mut impl Write, data: &[u8]) -> io::Result<usize> {
            w.write_all(data).map(|_| data.len())
        }

        // magic
        written_len += write_all(w, b"psbt")?;
        // separator
        written_len += write_all(w, &[0xff])?;

        written_len += write_all(w, &self.serialize_map())?;

        for i in &self.inputs {
            written_len += write_all(w, &i.serialize_map())?;
        }

        for i in &self.outputs {
            written_len += write_all(w, &i.serialize_map())?;
        }

        Ok(written_len)
    }

    /// Deserialize a value from raw binary data.
    pub fn deserialize(mut bytes: &[u8]) -> Result<Self, Error> {
        Self::deserialize_from_reader(&mut bytes)
    }

    /// Deserialize a value from raw binary data read from a `BufRead` object.
    pub fn deserialize_from_reader<R: io::BufRead>(r: &mut R) -> Result<Self, Error> {
        const MAGIC_BYTES: &[u8] = b"psbt";

        let magic: [u8; 4] = Decodable::consensus_decode(r)?;
        if magic != MAGIC_BYTES {
            return Err(Error::InvalidMagic);
        }

        const PSBT_SERPARATOR: u8 = 0xff_u8;
        let separator: u8 = Decodable::consensus_decode(r)?;
        if separator != PSBT_SERPARATOR {
            return Err(Error::InvalidSeparator);
        }

        let mut global = Psbt::decode_global(r)?;
        global.unsigned_tx_checks()?;

        let inputs: Vec<Input> = {
            let inputs_len: usize = (global.unsigned_tx.input).len();

            let mut inputs: Vec<Input> = Vec::with_capacity(inputs_len);

            for _ in 0..inputs_len {
                inputs.push(Input::decode(r)?);
            }

            inputs
        };

        let outputs: Vec<Output> = {
            let outputs_len: usize = (global.unsigned_tx.output).len();

            let mut outputs: Vec<Output> = Vec::with_capacity(outputs_len);

            for _ in 0..outputs_len {
                outputs.push(Output::decode(r)?);
            }

            outputs
        };

        global.inputs = inputs;
        global.outputs = outputs;
        Ok(global)
    }
}
impl_psbt_de_serialize!(Transaction);
impl_psbt_de_serialize!(TxOut);
impl_psbt_de_serialize!(Witness);
impl_psbt_hash_de_serialize!(ripemd160::Hash);
impl_psbt_hash_de_serialize!(sha256::Hash);
impl_psbt_hash_de_serialize!(TapLeafHash);
impl_psbt_hash_de_serialize!(TapNodeHash);
impl_psbt_hash_de_serialize!(hash160::Hash);
impl_psbt_hash_de_serialize!(sha256d::Hash);

// taproot
impl_psbt_de_serialize!(Vec<TapLeafHash>);

impl Serialize for ScriptBuf {
    fn serialize(&self) -> Vec<u8> { self.to_bytes() }
}

impl Deserialize for ScriptBuf {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> { Ok(Self::from(bytes.to_vec())) }
}

impl Serialize for PublicKey {
    fn serialize(&self) -> Vec<u8> {
        let mut buf = Vec::new();
        self.write_into(&mut buf).expect("vecs don't error");
        buf
    }
}

impl Deserialize for PublicKey {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        PublicKey::from_slice(bytes).map_err(Error::InvalidPublicKey)
    }
}

impl Serialize for secp256k1::PublicKey {
    fn serialize(&self) -> Vec<u8> { self.serialize().to_vec() }
}

impl Deserialize for secp256k1::PublicKey {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        secp256k1::PublicKey::from_slice(bytes).map_err(Error::InvalidSecp256k1PublicKey)
    }
}

impl Serialize for ecdsa::Signature {
    fn serialize(&self) -> Vec<u8> { self.to_vec() }
}

impl Deserialize for ecdsa::Signature {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        // NB: Since BIP-174 says "the signature as would be pushed to the stack from
        // a scriptSig or witness" we should ideally use a consensus deserialization and do
        // not error on a non-standard values. However,
        //
        // 1) the current implementation of from_u32_consensus(`flag`) does not preserve
        // the sighash byte `flag` mapping all unknown values to EcdsaSighashType::All or
        // EcdsaSighashType::AllPlusAnyOneCanPay. Therefore, break the invariant
        // EcdsaSig::from_slice(&sl[..]).to_vec = sl.
        //
        // 2) This would cause to have invalid signatures because the sighash message
        // also has a field sighash_u32 (See BIP141). For example, when signing with non-standard
        // 0x05, the sighash message would have the last field as 0x05u32 while, the verification
        // would use check the signature assuming sighash_u32 as `0x01`.
        ecdsa::Signature::from_slice(bytes).map_err(|e| match e {
            ecdsa::Error::EmptySignature => Error::InvalidEcdsaSignature(e),
            ecdsa::Error::SighashType(err) => Error::NonStandardSighashType(err.0),
            ecdsa::Error::Secp256k1(..) => Error::InvalidEcdsaSignature(e),
            ecdsa::Error::Hex(..) => unreachable!("Decoding from slice, not hex"),
        })
    }
}

impl Serialize for KeySource {
    fn serialize(&self) -> Vec<u8> {
        let mut rv: Vec<u8> = Vec::with_capacity(key_source_len(self));

        rv.append(&mut self.0.to_bytes().to_vec());

        for cnum in self.1.into_iter() {
            rv.append(&mut serialize(&u32::from(*cnum)))
        }

        rv
    }
}

impl Deserialize for KeySource {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        if bytes.len() < 4 {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into());
        }

        let fprint: Fingerprint = bytes[0..4].try_into().expect("4 is the fingerprint length");
        let mut dpath: Vec<ChildNumber> = Default::default();

        let mut d = &bytes[4..];
        while !d.is_empty() {
            match u32::consensus_decode(&mut d) {
                Ok(index) => dpath.push(index.into()),
                Err(e) => return Err(e.into()),
            }
        }

        Ok((fprint, dpath.into()))
    }
}

// partial sigs
impl Serialize for Vec<u8> {
    fn serialize(&self) -> Vec<u8> { self.clone() }
}

impl Deserialize for Vec<u8> {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> { Ok(bytes.to_vec()) }
}

impl Serialize for PsbtSighashType {
    fn serialize(&self) -> Vec<u8> { serialize(&self.to_u32()) }
}

impl Deserialize for PsbtSighashType {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        let raw: u32 = encode::deserialize(bytes)?;
        Ok(PsbtSighashType { inner: raw })
    }
}

// Taproot related ser/deser
impl Serialize for XOnlyPublicKey {
    fn serialize(&self) -> Vec<u8> { XOnlyPublicKey::serialize(self).to_vec() }
}

impl Deserialize for XOnlyPublicKey {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        XOnlyPublicKey::from_slice(bytes).map_err(|_| Error::InvalidXOnlyPublicKey)
    }
}

impl Serialize for taproot::Signature {
    fn serialize(&self) -> Vec<u8> { self.to_vec() }
}

impl Deserialize for taproot::Signature {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        use taproot::SigFromSliceError::*;

        taproot::Signature::from_slice(bytes).map_err(|e| match e {
            SighashType(err) => Error::NonStandardSighashType(err.0),
            InvalidSignatureSize(_) => Error::InvalidTaprootSignature(e),
            Secp256k1(..) => Error::InvalidTaprootSignature(e),
        })
    }
}

impl Serialize for (XOnlyPublicKey, TapLeafHash) {
    fn serialize(&self) -> Vec<u8> {
        let ser_pk = self.0.serialize();
        let mut buf = Vec::with_capacity(ser_pk.len() + self.1.as_byte_array().len());
        buf.extend(&ser_pk);
        buf.extend(self.1.as_byte_array());
        buf
    }
}

impl Deserialize for (XOnlyPublicKey, TapLeafHash) {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        if bytes.len() < 32 {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into());
        }
        let a: XOnlyPublicKey = Deserialize::deserialize(&bytes[..32])?;
        let b: TapLeafHash = Deserialize::deserialize(&bytes[32..])?;
        Ok((a, b))
    }
}

impl Serialize for ControlBlock {
    fn serialize(&self) -> Vec<u8> { ControlBlock::serialize(self) }
}

impl Deserialize for ControlBlock {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        Self::decode(bytes).map_err(|_| Error::InvalidControlBlock)
    }
}

// Versioned ScriptBuf
impl Serialize for (ScriptBuf, LeafVersion) {
    fn serialize(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(self.0.len() + 1);
        buf.extend(self.0.as_bytes());
        buf.push(self.1.to_consensus());
        buf
    }
}

impl Deserialize for (ScriptBuf, LeafVersion) {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        if bytes.is_empty() {
            return Err(io::Error::from(io::ErrorKind::UnexpectedEof).into());
        }
        // The last byte is LeafVersion.
        let script = ScriptBuf::deserialize(&bytes[..bytes.len() - 1])?;
        let leaf_ver = LeafVersion::from_consensus(bytes[bytes.len() - 1])
            .map_err(|_| Error::InvalidLeafVersion)?;
        Ok((script, leaf_ver))
    }
}

impl Serialize for (Vec<TapLeafHash>, KeySource) {
    fn serialize(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(32 * self.0.len() + key_source_len(&self.1));
        self.0.consensus_encode(&mut buf).expect("Vecs don't error allocation");
        buf.extend(self.1.serialize());
        buf
    }
}

impl Deserialize for (Vec<TapLeafHash>, KeySource) {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        let (leafhash_vec, consumed) = deserialize_partial::<Vec<TapLeafHash>>(bytes)?;
        let key_source = KeySource::deserialize(&bytes[consumed..])?;
        Ok((leafhash_vec, key_source))
    }
}

impl Serialize for TapTree {
    fn serialize(&self) -> Vec<u8> {
        let capacity = self
            .script_leaves()
            .map(|l| {
                l.script().len() + VarInt::from(l.script().len()).size() // script version
            + 1 // merkle branch
            + 1 // leaf version
            })
            .sum::<usize>();
        let mut buf = Vec::with_capacity(capacity);
        for leaf_info in self.script_leaves() {
            // # Cast Safety:
            //
            // TaprootMerkleBranch can only have len atmost 128(TAPROOT_CONTROL_MAX_NODE_COUNT).
            // safe to cast from usize to u8
            buf.push(leaf_info.merkle_branch().len() as u8);
            buf.push(leaf_info.version().to_consensus());
            leaf_info.script().consensus_encode(&mut buf).expect("Vecs dont err");
        }
        buf
    }
}

impl Deserialize for TapTree {
    fn deserialize(bytes: &[u8]) -> Result<Self, Error> {
        let mut builder = TaprootBuilder::new();
        let mut bytes_iter = bytes.iter();
        while let Some(depth) = bytes_iter.next() {
            let version = bytes_iter.next().ok_or(Error::Taproot("Invalid Taproot Builder"))?;
            let (script, consumed) = deserialize_partial::<ScriptBuf>(bytes_iter.as_slice())?;
            if consumed > 0 {
                bytes_iter.nth(consumed - 1);
            }
            let leaf_version =
                LeafVersion::from_consensus(*version).map_err(|_| Error::InvalidLeafVersion)?;
            builder = builder
                .add_leaf_with_ver(*depth, script, leaf_version)
                .map_err(|_| Error::Taproot("Tree not in DFS order"))?;
        }
        TapTree::try_from(builder).map_err(Error::TapTree)
    }
}

// Helper function to compute key source len
fn key_source_len(key_source: &KeySource) -> usize { 4 + 4 * (key_source.1).as_ref().len() }

#[cfg(test)]
mod tests {
    use super::*;

    // Composes tree matching a given depth map, filled with dumb script leafs,
    // each of which consists of a single push-int op code, with int value
    // increased for each consecutive leaf.
    pub fn compose_taproot_builder<'map>(
        opcode: u8,
        depth_map: impl IntoIterator<Item = &'map u8>,
    ) -> TaprootBuilder {
        let mut val = opcode;
        let mut builder = TaprootBuilder::new();
        for depth in depth_map {
            let script = ScriptBuf::from_hex(&format!("{:02x}", val)).unwrap();
            builder = builder.add_leaf(*depth, script).unwrap();
            let (new_val, _) = val.overflowing_add(1);
            val = new_val;
        }
        builder
    }

    #[test]
    fn taptree_hidden() {
        let mut builder = compose_taproot_builder(0x51, &[2, 2, 2]);
        builder = builder
            .add_leaf_with_ver(
                3,
                ScriptBuf::from_hex("b9").unwrap(),
                LeafVersion::from_consensus(0xC2).unwrap(),
            )
            .unwrap();
        builder = builder.add_hidden_node(3, TapNodeHash::all_zeros()).unwrap();
        assert!(TapTree::try_from(builder).is_err());
    }

    #[test]
    fn taptree_roundtrip() {
        let mut builder = compose_taproot_builder(0x51, &[2, 2, 2, 3]);
        builder = builder
            .add_leaf_with_ver(
                3,
                ScriptBuf::from_hex("b9").unwrap(),
                LeafVersion::from_consensus(0xC2).unwrap(),
            )
            .unwrap();
        let tree = TapTree::try_from(builder).unwrap();
        let tree_prime = TapTree::deserialize(&tree.serialize()).unwrap();
        assert_eq!(tree, tree_prime);
    }

    #[test]
    fn can_deserialize_non_standard_psbt_sighash_type() {
        let non_standard_sighash = [222u8, 0u8, 0u8, 0u8]; // 32 byte value.
        let sighash = PsbtSighashType::deserialize(&non_standard_sighash);
        assert!(sighash.is_ok())
    }

    #[test]
    #[should_panic(expected = "InvalidMagic")]
    fn invalid_vector_1() {
        let hex_psbt = b"0200000001268171371edff285e937adeea4b37b78000c0566cbb3ad64641713ca42171bf6000000006a473044022070b2245123e6bf474d60c5b50c043d4c691a5d2435f09a34a7662a9dc251790a022001329ca9dacf280bdf30740ec0390422422c81cb45839457aeb76fc12edd95b3012102657d118d3357b8e0f4c2cd46db7b39f6d9c38d9a70abcb9b2de5dc8dbfe4ce31feffffff02d3dff505000000001976a914d0c59903c5bac2868760e90fd521a4665aa7652088ac00e1f5050000000017a9143545e6e33b832c47050f24d3eeb93c9c03948bc787b32e1300";
        Psbt::deserialize(hex_psbt).unwrap();
    }
}