1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// SPDX-License-Identifier: CC0-1.0

//! # Bare Output Descriptors
//!
//! Implementation of Bare Descriptors (i.e descriptors that are)
//! wrapped inside wsh, or sh fragments.
//! Also includes pk, and pkh descriptors
//!

use core::fmt;

use bitcoin::script::{self, PushBytes};
use bitcoin::{Address, Network, ScriptBuf, Weight};

use super::checksum::verify_checksum;
use crate::descriptor::{write_descriptor, DefiniteDescriptorKey};
use crate::expression::{self, FromTree};
use crate::miniscript::context::{ScriptContext, ScriptContextError};
use crate::miniscript::satisfy::{Placeholder, Satisfaction, Witness};
use crate::plan::AssetProvider;
use crate::policy::{semantic, Liftable};
use crate::prelude::*;
use crate::util::{varint_len, witness_to_scriptsig};
use crate::{
    BareCtx, Error, ForEachKey, FromStrKey, Miniscript, MiniscriptKey, Satisfier, ToPublicKey,
    TranslateErr, TranslatePk, Translator,
};

/// Create a Bare Descriptor. That is descriptor that is
/// not wrapped in sh or wsh. This covers the Pk descriptor
#[derive(Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct Bare<Pk: MiniscriptKey> {
    /// underlying miniscript
    ms: Miniscript<Pk, BareCtx>,
}

impl<Pk: MiniscriptKey> Bare<Pk> {
    /// Create a new raw descriptor
    pub fn new(ms: Miniscript<Pk, BareCtx>) -> Result<Self, Error> {
        // do the top-level checks
        BareCtx::top_level_checks(&ms)?;
        Ok(Self { ms })
    }

    /// get the inner
    pub fn into_inner(self) -> Miniscript<Pk, BareCtx> { self.ms }

    /// get the inner
    pub fn as_inner(&self) -> &Miniscript<Pk, BareCtx> { &self.ms }

    /// Checks whether the descriptor is safe.
    pub fn sanity_check(&self) -> Result<(), Error> {
        self.ms.sanity_check()?;
        Ok(())
    }

    /// Computes an upper bound on the difference between a non-satisfied
    /// `TxIn`'s `segwit_weight` and a satisfied `TxIn`'s `segwit_weight`
    ///
    /// Since this method uses `segwit_weight` instead of `legacy_weight`,
    /// if you want to include only legacy inputs in your transaction,
    /// you should remove 1WU from each input's `max_weight_to_satisfy`
    /// for a more accurate estimate.
    ///
    /// Assumes all ECDSA signatures are 73 bytes, including push opcode and
    /// sighash suffix.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    pub fn max_weight_to_satisfy(&self) -> Result<Weight, Error> {
        let scriptsig_size = self.ms.max_satisfaction_size()?;
        // scriptSig varint difference between non-satisfied (0) and satisfied
        let scriptsig_varint_diff = varint_len(scriptsig_size) - varint_len(0);
        Weight::from_vb((scriptsig_varint_diff + scriptsig_size) as u64)
            .ok_or(Error::CouldNotSatisfy)
    }

    /// Computes an upper bound on the weight of a satisfying witness to the
    /// transaction.
    ///
    /// Assumes all ec-signatures are 73 bytes, including push opcode and
    /// sighash suffix. Includes the weight of the VarInts encoding the
    /// scriptSig and witness stack length.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    #[deprecated(
        since = "10.0.0",
        note = "Use max_weight_to_satisfy instead. The method to count bytes was redesigned and the results will differ from max_weight_to_satisfy. For more details check rust-bitcoin/rust-miniscript#476."
    )]
    pub fn max_satisfaction_weight(&self) -> Result<usize, Error> {
        let scriptsig_len = self.ms.max_satisfaction_size()?;
        Ok(4 * (varint_len(scriptsig_len) + scriptsig_len))
    }
}

impl<Pk: MiniscriptKey + ToPublicKey> Bare<Pk> {
    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn script_pubkey(&self) -> ScriptBuf { self.ms.encode() }

    /// Obtains the underlying miniscript for this descriptor.
    pub fn inner_script(&self) -> ScriptBuf { self.script_pubkey() }

    /// Obtains the pre bip-340 signature script code for this descriptor.
    pub fn ecdsa_sighash_script_code(&self) -> ScriptBuf { self.script_pubkey() }

    /// Returns satisfying non-malleable witness and scriptSig with minimum
    /// weight to spend an output controlled by the given descriptor if it is
    /// possible to construct one using the `satisfier`.
    pub fn get_satisfaction<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
    where
        S: Satisfier<Pk>,
    {
        let ms = self.ms.satisfy(satisfier)?;
        let script_sig = witness_to_scriptsig(&ms);
        let witness = vec![];
        Ok((witness, script_sig))
    }

    /// Returns satisfying, possibly malleable, witness and scriptSig with
    /// minimum weight to spend an output controlled by the given descriptor if
    /// it is possible to construct one using the `satisfier`.
    pub fn get_satisfaction_mall<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
    where
        S: Satisfier<Pk>,
    {
        let ms = self.ms.satisfy_malleable(satisfier)?;
        let script_sig = witness_to_scriptsig(&ms);
        let witness = vec![];
        Ok((witness, script_sig))
    }
}

impl Bare<DefiniteDescriptorKey> {
    /// Returns a plan if the provided assets are sufficient to produce a non-malleable satisfaction
    pub fn plan_satisfaction<P>(
        &self,
        provider: &P,
    ) -> Satisfaction<Placeholder<DefiniteDescriptorKey>>
    where
        P: AssetProvider<DefiniteDescriptorKey>,
    {
        self.ms.build_template(provider)
    }

    /// Returns a plan if the provided assets are sufficient to produce a malleable satisfaction
    pub fn plan_satisfaction_mall<P>(
        &self,
        provider: &P,
    ) -> Satisfaction<Placeholder<DefiniteDescriptorKey>>
    where
        P: AssetProvider<DefiniteDescriptorKey>,
    {
        self.ms.build_template_mall(provider)
    }
}

impl<Pk: MiniscriptKey> fmt::Debug for Bare<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}", self.ms) }
}

impl<Pk: MiniscriptKey> fmt::Display for Bare<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write_descriptor!(f, "{}", self.ms) }
}

impl<Pk: MiniscriptKey> Liftable<Pk> for Bare<Pk> {
    fn lift(&self) -> Result<semantic::Policy<Pk>, Error> { self.ms.lift() }
}

impl<Pk: FromStrKey> FromTree for Bare<Pk> {
    fn from_tree(top: &expression::Tree) -> Result<Self, Error> {
        let sub = Miniscript::<Pk, BareCtx>::from_tree(top)?;
        BareCtx::top_level_checks(&sub)?;
        Bare::new(sub)
    }
}

impl<Pk: FromStrKey> core::str::FromStr for Bare<Pk> {
    type Err = Error;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let desc_str = verify_checksum(s)?;
        let top = expression::Tree::from_str(desc_str)?;
        Self::from_tree(&top)
    }
}

impl<Pk: MiniscriptKey> ForEachKey<Pk> for Bare<Pk> {
    fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, pred: F) -> bool {
        self.ms.for_each_key(pred)
    }
}

impl<P, Q> TranslatePk<P, Q> for Bare<P>
where
    P: MiniscriptKey,
    Q: MiniscriptKey,
{
    type Output = Bare<Q>;

    fn translate_pk<T, E>(&self, t: &mut T) -> Result<Bare<Q>, TranslateErr<E>>
    where
        T: Translator<P, Q, E>,
    {
        Bare::new(self.ms.translate_pk(t)?).map_err(TranslateErr::OuterError)
    }
}

/// A bare PkH descriptor at top level
#[derive(Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
pub struct Pkh<Pk: MiniscriptKey> {
    /// underlying publickey
    pk: Pk,
}

impl<Pk: MiniscriptKey> Pkh<Pk> {
    /// Create a new Pkh descriptor
    pub fn new(pk: Pk) -> Result<Self, ScriptContextError> {
        // do the top-level checks
        match BareCtx::check_pk(&pk) {
            Ok(()) => Ok(Pkh { pk }),
            Err(e) => Err(e),
        }
    }

    /// Get a reference to the inner key
    pub fn as_inner(&self) -> &Pk { &self.pk }

    /// Get the inner key
    pub fn into_inner(self) -> Pk { self.pk }

    /// Computes an upper bound on the difference between a non-satisfied
    /// `TxIn`'s `segwit_weight` and a satisfied `TxIn`'s `segwit_weight`
    ///
    /// Since this method uses `segwit_weight` instead of `legacy_weight`,
    /// if you want to include only legacy inputs in your transaction,
    /// you should remove 1WU from each input's `max_weight_to_satisfy`
    /// for a more accurate estimate.
    ///
    /// Assumes all ECDSA signatures are 73 bytes, including push opcode and
    /// sighash suffix.
    ///
    /// # Errors
    /// When the descriptor is impossible to safisfy (ex: sh(OP_FALSE)).
    pub fn max_weight_to_satisfy(&self) -> Weight {
        // OP_72 + <sig(71)+sigHash(1)> + OP_33 + <pubkey>
        let scriptsig_size = 73 + BareCtx::pk_len(&self.pk);
        // scriptSig varint different between non-satisfied (0) and satisfied
        let scriptsig_varint_diff = varint_len(scriptsig_size) - varint_len(0);
        Weight::from_vb((scriptsig_varint_diff + scriptsig_size) as u64).unwrap()
    }

    /// Computes an upper bound on the weight of a satisfying witness to the
    /// transaction.
    ///
    /// Assumes all ec-signatures are 73 bytes, including push opcode and
    /// sighash suffix. Includes the weight of the VarInts encoding the
    /// scriptSig and witness stack length.
    #[deprecated(
        since = "10.0.0",
        note = "Use max_weight_to_satisfy instead. The method to count bytes was redesigned and the results will differ from max_weight_to_satisfy. For more details check rust-bitcoin/rust-miniscript#476."
    )]
    pub fn max_satisfaction_weight(&self) -> usize { 4 * (1 + 73 + BareCtx::pk_len(&self.pk)) }
}

impl<Pk: MiniscriptKey + ToPublicKey> Pkh<Pk> {
    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn script_pubkey(&self) -> ScriptBuf {
        // Fine to hard code the `Network` here because we immediately call
        // `script_pubkey` which does not use the `network` field of `Address`.
        let addr = self.address(Network::Bitcoin);
        addr.script_pubkey()
    }

    /// Obtains the corresponding script pubkey for this descriptor.
    pub fn address(&self, network: Network) -> Address {
        Address::p2pkh(self.pk.to_public_key(), network)
    }

    /// Obtains the underlying miniscript for this descriptor.
    pub fn inner_script(&self) -> ScriptBuf { self.script_pubkey() }

    /// Obtains the pre bip-340 signature script code for this descriptor.
    pub fn ecdsa_sighash_script_code(&self) -> ScriptBuf { self.script_pubkey() }

    /// Returns satisfying non-malleable witness and scriptSig with minimum
    /// weight to spend an output controlled by the given descriptor if it is
    /// possible to construct one using the `satisfier`.
    pub fn get_satisfaction<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
    where
        S: Satisfier<Pk>,
    {
        if let Some(sig) = satisfier.lookup_ecdsa_sig(&self.pk) {
            let script_sig = script::Builder::new()
                .push_slice::<&PushBytes>(
                    // serialize() does not allocate here
                    sig.serialize().as_ref(),
                )
                .push_key(&self.pk.to_public_key())
                .into_script();
            let witness = vec![];
            Ok((witness, script_sig))
        } else {
            Err(Error::MissingSig(self.pk.to_public_key()))
        }
    }

    /// Returns satisfying, possibly malleable, witness and scriptSig with
    /// minimum weight to spend an output controlled by the given descriptor if
    /// it is possible to construct one using the `satisfier`.
    pub fn get_satisfaction_mall<S>(&self, satisfier: S) -> Result<(Vec<Vec<u8>>, ScriptBuf), Error>
    where
        S: Satisfier<Pk>,
    {
        self.get_satisfaction(satisfier)
    }
}

impl Pkh<DefiniteDescriptorKey> {
    /// Returns a plan if the provided assets are sufficient to produce a non-malleable satisfaction
    pub fn plan_satisfaction<P>(
        &self,
        provider: &P,
    ) -> Satisfaction<Placeholder<DefiniteDescriptorKey>>
    where
        P: AssetProvider<DefiniteDescriptorKey>,
    {
        let stack = if provider.provider_lookup_ecdsa_sig(&self.pk) {
            let stack = vec![
                Placeholder::EcdsaSigPk(self.pk.clone()),
                Placeholder::Pubkey(self.pk.clone(), BareCtx::pk_len(&self.pk)),
            ];
            Witness::Stack(stack)
        } else {
            Witness::Unavailable
        };

        Satisfaction { stack, has_sig: true, relative_timelock: None, absolute_timelock: None }
    }

    /// Returns a plan if the provided assets are sufficient to produce a malleable satisfaction
    pub fn plan_satisfaction_mall<P>(
        &self,
        provider: &P,
    ) -> Satisfaction<Placeholder<DefiniteDescriptorKey>>
    where
        P: AssetProvider<DefiniteDescriptorKey>,
    {
        self.plan_satisfaction(provider)
    }
}

impl<Pk: MiniscriptKey> fmt::Debug for Pkh<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "pkh({:?})", self.pk) }
}

impl<Pk: MiniscriptKey> fmt::Display for Pkh<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write_descriptor!(f, "pkh({})", self.pk)
    }
}

impl<Pk: MiniscriptKey> Liftable<Pk> for Pkh<Pk> {
    fn lift(&self) -> Result<semantic::Policy<Pk>, Error> {
        Ok(semantic::Policy::Key(self.pk.clone()))
    }
}

impl<Pk: FromStrKey> FromTree for Pkh<Pk> {
    fn from_tree(top: &expression::Tree) -> Result<Self, Error> {
        if top.name == "pkh" && top.args.len() == 1 {
            Ok(Pkh::new(expression::terminal(&top.args[0], |pk| Pk::from_str(pk))?)?)
        } else {
            Err(Error::Unexpected(format!(
                "{}({} args) while parsing pkh descriptor",
                top.name,
                top.args.len(),
            )))
        }
    }
}

impl<Pk: FromStrKey> core::str::FromStr for Pkh<Pk> {
    type Err = Error;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let desc_str = verify_checksum(s)?;
        let top = expression::Tree::from_str(desc_str)?;
        Self::from_tree(&top)
    }
}

impl<Pk: MiniscriptKey> ForEachKey<Pk> for Pkh<Pk> {
    fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, mut pred: F) -> bool { pred(&self.pk) }
}

impl<P, Q> TranslatePk<P, Q> for Pkh<P>
where
    P: MiniscriptKey,
    Q: MiniscriptKey,
{
    type Output = Pkh<Q>;

    fn translate_pk<T, E>(&self, t: &mut T) -> Result<Self::Output, TranslateErr<E>>
    where
        T: Translator<P, Q, E>,
    {
        let res = Pkh::new(t.pk(&self.pk)?);
        match res {
            Ok(pk) => Ok(pk),
            Err(e) => Err(TranslateErr::OuterError(Error::from(e))),
        }
    }
}