1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
// Written in 2020 by Sanket Kanjular and Andrew Poelstra
// SPDX-License-Identifier: CC0-1.0
//! Interpreter stack
use bitcoin::blockdata::{opcodes, script};
use bitcoin::hashes::{hash160, ripemd160, sha256, Hash};
use bitcoin::{absolute, relative, Sequence};
use super::error::PkEvalErrInner;
use super::{verify_sersig, BitcoinKey, Error, HashLockType, KeySigPair, SatisfiedConstraint};
use crate::hash256;
use crate::miniscript::context::SigType;
use crate::prelude::*;
/// Definition of Stack Element of the Stack used for interpretation of Miniscript.
///
/// All stack elements with `vec![]` go to `Element::Dissatisfied` and `vec![1]` are marked to
/// `Element::Satisfied`. Others are directly pushed as witness.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
pub enum Element<'txin> {
/// Result of a satisfied Miniscript fragment
/// Translated from `vec![1]` from input stack
Satisfied,
/// Result of a dissatisfied Miniscript fragment
/// Translated from `vec![]` from input stack
Dissatisfied,
/// Input from the witness stack
Push(&'txin [u8]),
}
impl<'txin> From<&'txin Vec<u8>> for Element<'txin> {
fn from(v: &'txin Vec<u8>) -> Element<'txin> { From::from(&v[..]) }
}
impl<'txin> From<&'txin [u8]> for Element<'txin> {
fn from(v: &'txin [u8]) -> Element<'txin> {
if *v == [1] {
Element::Satisfied
} else if v.is_empty() {
Element::Dissatisfied
} else {
Element::Push(v)
}
}
}
impl<'txin> Element<'txin> {
/// Converts a Bitcoin `script::Instruction` to a stack element
///
/// Supports `OP_1` but no other numbers since these are not used by Miniscript
pub fn from_instruction(
ins: Result<script::Instruction<'txin>, bitcoin::blockdata::script::Error>,
) -> Result<Self, Error> {
match ins {
//Also covers the dissatisfied case as PushBytes0
Ok(script::Instruction::PushBytes(v)) => Ok(Element::from(v.as_bytes())),
Ok(script::Instruction::Op(opcodes::all::OP_PUSHNUM_1)) => Ok(Element::Satisfied),
_ => Err(Error::ExpectedPush),
}
}
// Get push element as slice, returning UnexpectedBool otherwise
pub(super) fn as_push(&self) -> Result<&[u8], Error> {
if let Element::Push(sl) = *self {
Ok(sl)
} else {
Err(Error::UnexpectedStackBoolean)
}
}
}
/// Stack Data structure representing the stack input to Miniscript. This Stack
/// is created from the combination of ScriptSig and Witness stack.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Debug, Default, Hash)]
pub struct Stack<'txin>(Vec<Element<'txin>>);
impl<'txin> From<Vec<Element<'txin>>> for Stack<'txin> {
fn from(v: Vec<Element<'txin>>) -> Self { Stack(v) }
}
impl<'txin> Stack<'txin> {
/// Whether the stack is empty
pub fn is_empty(&self) -> bool { self.0.is_empty() }
/// Number of elements on the stack
pub fn len(&mut self) -> usize { self.0.len() }
/// Removes the top stack element, if the stack is nonempty
pub fn pop(&mut self) -> Option<Element<'txin>> { self.0.pop() }
/// Pushes an element onto the top of the stack
pub fn push(&mut self, elem: Element<'txin>) { self.0.push(elem); }
/// Returns a new stack representing the top `k` elements of the stack,
/// removing these elements from the original
pub fn split_off(&mut self, k: usize) -> Vec<Element<'txin>> { self.0.split_off(k) }
/// Returns a reference to the top stack element, if the stack is nonempty
pub fn last(&self) -> Option<&Element<'txin>> { self.0.last() }
/// Helper function to evaluate a Pk Node which takes the
/// top of the stack as input signature and validates it.
/// Sat: If the signature witness is correct, 1 is pushed
/// Unsat: For empty witness a 0 is pushed
/// Err: All of other witness result in errors.
/// `pk` CHECKSIG
pub(super) fn evaluate_pk<'intp>(
&mut self,
verify_sig: &mut Box<dyn FnMut(&KeySigPair) -> bool + 'intp>,
pk: BitcoinKey,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(sigser) = self.pop() {
match sigser {
Element::Dissatisfied => {
self.push(Element::Dissatisfied);
None
}
Element::Push(sigser) => {
let key_sig = verify_sersig(verify_sig, &pk, sigser);
match key_sig {
Ok(key_sig) => {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::PublicKey { key_sig }))
}
Err(e) => Some(Err(e)),
}
}
Element::Satisfied => Some(Err(Error::PkEvaluationError(PkEvalErrInner::from(pk)))),
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a Pkh Node. Takes input as pubkey and sig
/// from the top of the stack and outputs Sat if the pubkey, sig is valid
/// Sat: If the pubkey hash matches and signature witness is correct,
/// Unsat: For an empty witness
/// Err: All of other witness result in errors.
/// `DUP HASH160 <keyhash> EQUALVERIY CHECKSIG`
pub(super) fn evaluate_pkh<'intp>(
&mut self,
verify_sig: &mut Box<dyn FnMut(&KeySigPair) -> bool + 'intp>,
pkh: hash160::Hash,
sig_type: SigType,
) -> Option<Result<SatisfiedConstraint, Error>> {
// Parse a bitcoin key from witness data slice depending on hash context
// when we encounter a pkh(hash)
// Depending on the tag of hash, we parse the as full key or x-only-key
// TODO: All keys parse errors are currently captured in a single BadPubErr
// We don't really store information about which key error.
fn bitcoin_key_from_slice(sl: &[u8], sig_type: SigType) -> Option<BitcoinKey> {
let key: BitcoinKey = match sig_type {
SigType::Schnorr => bitcoin::key::XOnlyPublicKey::from_slice(sl).ok()?.into(),
SigType::Ecdsa => bitcoin::PublicKey::from_slice(sl).ok()?.into(),
};
Some(key)
}
if let Some(Element::Push(pk)) = self.pop() {
let pk_hash = hash160::Hash::hash(pk);
if pk_hash != pkh {
return Some(Err(Error::PkHashVerifyFail(pkh)));
}
match bitcoin_key_from_slice(pk, sig_type) {
Some(pk) => {
if let Some(sigser) = self.pop() {
match sigser {
Element::Dissatisfied => {
self.push(Element::Dissatisfied);
None
}
Element::Push(sigser) => {
let key_sig = verify_sersig(verify_sig, &pk, sigser);
match key_sig {
Ok(key_sig) => {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::PublicKeyHash {
keyhash: pkh,
key_sig,
}))
}
Err(e) => Some(Err(e)),
}
}
Element::Satisfied => Some(Err(Error::PkEvaluationError(pk.into()))),
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
None => Some(Err(Error::PubkeyParseError)),
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a After Node. Takes no argument from stack
/// `n CHECKLOCKTIMEVERIFY 0NOTEQUAL` and `n CHECKLOCKTIMEVERIFY`
/// Ideally this should return int value as n: build_scriptint(t as i64)),
/// The reason we don't need to copy the Script semantics is that
/// Miniscript never evaluates integers and it is safe to treat them as
/// booleans
pub(super) fn evaluate_after(
&mut self,
n: &absolute::LockTime,
lock_time: absolute::LockTime,
) -> Option<Result<SatisfiedConstraint, Error>> {
use absolute::LockTime::*;
let is_satisfied = match (*n, lock_time) {
(Blocks(n), Blocks(lock_time)) => n <= lock_time,
(Seconds(n), Seconds(lock_time)) => n <= lock_time,
_ => return Some(Err(Error::AbsoluteLockTimeComparisonInvalid(*n, lock_time))),
};
if is_satisfied {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::AbsoluteTimelock { n: *n }))
} else {
Some(Err(Error::AbsoluteLockTimeNotMet(*n)))
}
}
/// Helper function to evaluate a Older Node. Takes no argument from stack
/// `n CHECKSEQUENCEVERIFY 0NOTEQUAL` and `n CHECKSEQUENCEVERIFY`
/// Ideally this should return int value as n: build_scriptint(t as i64)),
/// The reason we don't need to copy the Script semantics is that
/// Miniscript never evaluates integers and it is safe to treat them as
/// booleans
pub(super) fn evaluate_older(
&mut self,
n: &relative::LockTime,
sequence: Sequence,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(tx_locktime) = sequence.to_relative_lock_time() {
if n.is_implied_by(tx_locktime) {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::RelativeTimelock { n: *n }))
} else {
Some(Err(Error::RelativeLockTimeNotMet(*n)))
}
} else {
// BIP 112: if the tx locktime has the disable flag set, fail CSV.
Some(Err(Error::RelativeLockTimeDisabled(*n)))
}
}
/// Helper function to evaluate a Sha256 Node.
/// `SIZE 32 EQUALVERIFY SHA256 h EQUAL`
pub(super) fn evaluate_sha256(
&mut self,
hash: &sha256::Hash,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(Element::Push(preimage)) = self.pop() {
if preimage.len() != 32 {
return Some(Err(Error::HashPreimageLengthMismatch));
}
if sha256::Hash::hash(preimage) == *hash {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::HashLock {
hash: HashLockType::Sha256(*hash),
preimage: preimage_from_sl(preimage),
}))
} else {
self.push(Element::Dissatisfied);
None
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a Hash256 Node.
/// `SIZE 32 EQUALVERIFY HASH256 h EQUAL`
pub(super) fn evaluate_hash256(
&mut self,
hash: &hash256::Hash,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(Element::Push(preimage)) = self.pop() {
if preimage.len() != 32 {
return Some(Err(Error::HashPreimageLengthMismatch));
}
if hash256::Hash::hash(preimage) == *hash {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::HashLock {
hash: HashLockType::Hash256(*hash),
preimage: preimage_from_sl(preimage),
}))
} else {
self.push(Element::Dissatisfied);
None
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a Hash160 Node.
/// `SIZE 32 EQUALVERIFY HASH160 h EQUAL`
pub(super) fn evaluate_hash160(
&mut self,
hash: &hash160::Hash,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(Element::Push(preimage)) = self.pop() {
if preimage.len() != 32 {
return Some(Err(Error::HashPreimageLengthMismatch));
}
if hash160::Hash::hash(preimage) == *hash {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::HashLock {
hash: HashLockType::Hash160(*hash),
preimage: preimage_from_sl(preimage),
}))
} else {
self.push(Element::Dissatisfied);
None
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a RipeMd160 Node.
/// `SIZE 32 EQUALVERIFY RIPEMD160 h EQUAL`
pub(super) fn evaluate_ripemd160(
&mut self,
hash: &ripemd160::Hash,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(Element::Push(preimage)) = self.pop() {
if preimage.len() != 32 {
return Some(Err(Error::HashPreimageLengthMismatch));
}
if ripemd160::Hash::hash(preimage) == *hash {
self.push(Element::Satisfied);
Some(Ok(SatisfiedConstraint::HashLock {
hash: HashLockType::Ripemd160(*hash),
preimage: preimage_from_sl(preimage),
}))
} else {
self.push(Element::Dissatisfied);
None
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
/// Helper function to evaluate a checkmultisig which takes the top of the
/// stack as input signatures and validates it in order of pubkeys.
/// For example, if the first signature is satisfied by second public key,
/// other signatures are not checked against the first pubkey.
/// `multi(2,pk1,pk2)` would be satisfied by `[0 sig2 sig1]` and Err on
/// `[0 sig2 sig1]`
pub(super) fn evaluate_multi<'intp>(
&mut self,
verify_sig: &mut Box<dyn FnMut(&KeySigPair) -> bool + 'intp>,
pk: &'intp BitcoinKey,
) -> Option<Result<SatisfiedConstraint, Error>> {
if let Some(witness_sig) = self.pop() {
if let Element::Push(sigser) = witness_sig {
let key_sig = verify_sersig(verify_sig, pk, sigser);
match key_sig {
Ok(key_sig) => Some(Ok(SatisfiedConstraint::PublicKey { key_sig })),
Err(..) => {
self.push(witness_sig);
None
}
}
} else {
Some(Err(Error::UnexpectedStackBoolean))
}
} else {
Some(Err(Error::UnexpectedStackEnd))
}
}
}
// Helper function to compute preimage from slice
fn preimage_from_sl(sl: &[u8]) -> [u8; 32] {
if sl.len() != 32 {
unreachable!("Internal: Preimage length checked to be 32")
} else {
let mut preimage = [0u8; 32];
preimage.copy_from_slice(sl);
preimage
}
}