1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
//! Fully serializable (ACID) multi-`Tree` transactions
//!
//! # Examples
//! ```
//! # use sled::{transaction::TransactionResult, Config};
//! # fn main() -> TransactionResult<()> {
//!
//! let config = Config::new().temporary(true);
//! let db1 = config.open().unwrap();
//! let db = db1.open_tree(b"a").unwrap();
//!
//! // Use write-only transactions as a writebatch:
//! db.transaction(|db| {
//!     db.insert(b"k1", b"cats")?;
//!     db.insert(b"k2", b"dogs")?;
//!     Ok(())
//! })?;
//!
//! // Atomically swap two items:
//! db.transaction(|db| {
//!     let v1_option = db.remove(b"k1")?;
//!     let v1 = v1_option.unwrap();
//!     let v2_option = db.remove(b"k2")?;
//!     let v2 = v2_option.unwrap();
//!
//!     db.insert(b"k1", v2)?;
//!     db.insert(b"k2", v1)?;
//!
//!     Ok(())
//! })?;
//!
//! assert_eq!(&db.get(b"k1")?.unwrap(), b"dogs");
//! assert_eq!(&db.get(b"k2")?.unwrap(), b"cats");
//! # Ok(())
//! # }
//! ```
//!
//! Transactions also work on tuples of `Tree`s,
//! preserving serializable ACID semantics!
//! In this example, we treat two trees like a
//! work queue, atomically apply updates to
//! data and move them from the unprocessed `Tree`
//! to the processed `Tree`.
//!
//! ```
//! # use sled::{transaction::{TransactionResult, Transactional}, Config};
//! # fn main() -> TransactionResult<()> {
//!
//! let config = Config::new().temporary(true);
//! let db = config.open().unwrap();
//!
//! let unprocessed = db.open_tree(b"unprocessed items").unwrap();
//! let processed = db.open_tree(b"processed items").unwrap();
//!
//! // An update somehow gets into the tree, which we
//! // later trigger the atomic processing of.
//! unprocessed.insert(b"k3", b"ligers").unwrap();
//!
//! // Atomically process the new item and move it
//! // between `Tree`s.
//! (&unprocessed, &processed)
//!     .transaction(|(unprocessed, processed)| {
//!         let unprocessed_item = unprocessed.remove(b"k3")?.unwrap();
//!         let mut processed_item = b"yappin' ".to_vec();
//!         processed_item.extend_from_slice(&unprocessed_item);
//!         processed.insert(b"k3", processed_item)?;
//!         Ok(())
//!     })?;
//!
//! assert_eq!(unprocessed.get(b"k3").unwrap(), None);
//! assert_eq!(&processed.get(b"k3").unwrap().unwrap(), b"yappin' ligers");
//! # Ok(())
//! # }
//! ```
#![allow(clippy::module_name_repetitions)]
use std::{cell::RefCell, fmt, rc::Rc};

#[cfg(not(feature = "testing"))]
use std::collections::HashMap as Map;

// we avoid HashMap while testing because
// it makes tests non-deterministic
#[cfg(feature = "testing")]
use std::collections::BTreeMap as Map;

use crate::{
    concurrency_control, pin, Batch, Error, Guard, IVec, Protector, Result,
    Tree,
};

/// A transaction that will
/// be applied atomically to the
/// Tree.
#[derive(Clone)]
pub struct TransactionalTree {
    pub(super) tree: Tree,
    pub(super) writes: Rc<RefCell<Map<IVec, Option<IVec>>>>,
    pub(super) read_cache: Rc<RefCell<Map<IVec, Option<IVec>>>>,
    pub(super) flush_on_commit: Rc<RefCell<bool>>,
}

/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum UnabortableTransactionError {
    /// An internal conflict has occurred and the `transaction` method will
    /// retry the passed-in closure until it succeeds. This should never be
    /// returned directly from the user's closure, as it will create an
    /// infinite loop that never returns. This is why it is hidden.
    Conflict,
    /// A serious underlying storage issue has occurred that requires
    /// attention from an operator or a remediating system, such as
    /// corruption.
    Storage(Error),
}

impl fmt::Display for UnabortableTransactionError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use UnabortableTransactionError::*;
        match self {
            Conflict => write!(f, "Conflict during transaction"),
            Storage(e) => e.fmt(f),
        }
    }
}

impl std::error::Error for UnabortableTransactionError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            UnabortableTransactionError::Storage(ref e) => Some(e),
            _ => None,
        }
    }
}

pub(crate) type UnabortableTransactionResult<T> =
    std::result::Result<T, UnabortableTransactionError>;

impl From<Error> for UnabortableTransactionError {
    fn from(error: Error) -> Self {
        UnabortableTransactionError::Storage(error)
    }
}

impl<E> From<UnabortableTransactionError> for ConflictableTransactionError<E> {
    fn from(error: UnabortableTransactionError) -> Self {
        match error {
            UnabortableTransactionError::Conflict => {
                ConflictableTransactionError::Conflict
            }
            UnabortableTransactionError::Storage(error) => {
                ConflictableTransactionError::Storage(error)
            }
        }
    }
}

/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum ConflictableTransactionError<T = Error> {
    /// A user-provided error type that indicates the transaction should abort.
    /// This is passed into the return value of `transaction` as a direct Err
    /// instance, rather than forcing users to interact with this enum
    /// directly.
    Abort(T),
    #[doc(hidden)]
    /// An internal conflict has occurred and the `transaction` method will
    /// retry the passed-in closure until it succeeds. This should never be
    /// returned directly from the user's closure, as it will create an
    /// infinite loop that never returns. This is why it is hidden.
    Conflict,
    /// A serious underlying storage issue has occurred that requires
    /// attention from an operator or a remediating system, such as
    /// corruption.
    Storage(Error),
}

impl<E: fmt::Display> fmt::Display for ConflictableTransactionError<E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use ConflictableTransactionError::*;
        match self {
            Abort(e) => e.fmt(f),
            Conflict => write!(f, "Conflict during transaction"),
            Storage(e) => e.fmt(f),
        }
    }
}

impl<E: std::error::Error> std::error::Error
    for ConflictableTransactionError<E>
{
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            ConflictableTransactionError::Storage(ref e) => Some(e),
            _ => None,
        }
    }
}

/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum TransactionError<T = Error> {
    /// A user-provided error type that indicates the transaction should abort.
    /// This is passed into the return value of `transaction` as a direct Err
    /// instance, rather than forcing users to interact with this enum
    /// directly.
    Abort(T),
    /// A serious underlying storage issue has occurred that requires
    /// attention from an operator or a remediating system, such as
    /// corruption.
    Storage(Error),
}

impl<E: fmt::Display> fmt::Display for TransactionError<E> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use TransactionError::*;
        match self {
            Abort(e) => e.fmt(f),
            Storage(e) => e.fmt(f),
        }
    }
}

impl<E: std::error::Error> std::error::Error for TransactionError<E> {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match self {
            TransactionError::Storage(ref e) => Some(e),
            _ => None,
        }
    }
}

/// A transaction-related `Result` which is used for transparently handling
/// concurrency-related conflicts when running transaction closures.
pub type ConflictableTransactionResult<T, E = ()> =
    std::result::Result<T, ConflictableTransactionError<E>>;

impl<T> From<Error> for ConflictableTransactionError<T> {
    fn from(error: Error) -> Self {
        ConflictableTransactionError::Storage(error)
    }
}

/// A transaction-related `Result` which is used for returning the
/// final result of a transaction after potentially running the provided
/// closure several times due to underlying conflicts.
pub type TransactionResult<T, E = ()> =
    std::result::Result<T, TransactionError<E>>;

impl<T> From<Error> for TransactionError<T> {
    fn from(error: Error) -> Self {
        TransactionError::Storage(error)
    }
}

impl TransactionalTree {
    /// Set a key to a new value
    pub fn insert<K, V>(
        &self,
        key: K,
        value: V,
    ) -> UnabortableTransactionResult<Option<IVec>>
    where
        K: AsRef<[u8]> + Into<IVec>,
        V: Into<IVec>,
    {
        let old = self.get(key.as_ref())?;
        let mut writes = self.writes.borrow_mut();
        let _last_write =
            writes.insert(key.into(), Some(value.into()));
        Ok(old)
    }

    /// Remove a key
    pub fn remove<K>(
        &self,
        key: K,
    ) -> UnabortableTransactionResult<Option<IVec>>
    where
        K: AsRef<[u8]> + Into<IVec>,
    {
        let old = self.get(key.as_ref());
        let mut writes = self.writes.borrow_mut();
        let _last_write = writes.insert(key.into(), None);
        old
    }

    /// Get the value associated with a key
    pub fn get<K: AsRef<[u8]>>(
        &self,
        key: K,
    ) -> UnabortableTransactionResult<Option<IVec>> {
        let writes = self.writes.borrow();
        if let Some(first_try) = writes.get(key.as_ref()) {
            return Ok(first_try.clone());
        }
        let mut reads = self.read_cache.borrow_mut();
        if let Some(second_try) = reads.get(key.as_ref()) {
            return Ok(second_try.clone());
        }

        // not found in a cache, need to hit the backing db
        let mut guard = pin();
        let get = loop {
            if let Ok(get) = self.tree.get_inner(key.as_ref(), &mut guard)? {
                break get;
            }
        };
        let last = reads.insert(key.as_ref().into(), get.clone());
        assert!(last.is_none());

        Ok(get)
    }

    /// Atomically apply multiple inserts and removals.
    pub fn apply_batch(
        &self,
        batch: &Batch,
    ) -> UnabortableTransactionResult<()> {
        for (k, v_opt) in &batch.writes {
            if let Some(v) = v_opt {
                let _old = self.insert(k, v)?;
            } else {
                let _old = self.remove(k)?;
            }
        }
        Ok(())
    }

    /// Flush the database before returning from the transaction.
    pub fn flush(&self) {
        *self.flush_on_commit.borrow_mut() = true;
    }

    /// Generate a monotonic ID. Not guaranteed to be
    /// contiguous or idempotent, can produce different values in the
    /// same transaction in case of conflicts.
    /// Written to disk every `idgen_persist_interval`
    /// operations, followed by a blocking flush. During recovery, we
    /// take the last recovered generated ID and add 2x
    /// the `idgen_persist_interval` to it. While persisting, if the
    /// previous persisted counter wasn't synced to disk yet, we will do
    /// a blocking flush to fsync the latest counter, ensuring
    /// that we will never give out the same counter twice.
    pub fn generate_id(&self) -> Result<u64> {
        self.tree.context.pagecache.generate_id_inner()
    }

    fn unstage(&self) {
        unimplemented!()
    }

    const fn validate(&self) -> bool {
        true
    }

    fn commit(&self) -> Result<()> {
        let writes = self.writes.borrow();
        let mut guard = pin();
        for (k, v_opt) in &*writes {
            while self.tree.insert_inner(k, v_opt.clone(), &mut guard)?.is_err()
            {
            }
        }
        Ok(())
    }
    fn from_tree(tree: &Tree) -> Self {
        Self {
            tree: tree.clone(),
            writes: Default::default(),
            read_cache: Default::default(),
            flush_on_commit: Default::default(),
        }
    }
}

/// A type which allows for pluggable transactional capabilities
pub struct TransactionalTrees {
    inner: Vec<TransactionalTree>,
}

impl TransactionalTrees {
    fn stage(&self) -> UnabortableTransactionResult<Protector<'_>> {
        Ok(concurrency_control::write())
    }

    fn unstage(&self) {
        for tree in &self.inner {
            tree.unstage();
        }
    }

    fn validate(&self) -> bool {
        for tree in &self.inner {
            if !tree.validate() {
                return false;
            }
        }
        true
    }

    fn commit(&self, guard: &Guard) -> Result<()> {
        let peg = self.inner[0].tree.context.pin_log(guard)?;
        for tree in &self.inner {
            tree.commit()?;
        }

        // when the peg drops, it ensures all updates
        // written to the log since its creation are
        // recovered atomically
        peg.seal_batch()
    }

    fn flush_if_configured(&self) -> Result<()> {
        let mut should_flush = None;

        for tree in &self.inner {
            if *tree.flush_on_commit.borrow() {
                should_flush = Some(tree);
                break;
            }
        }

        if let Some(tree) = should_flush {
            tree.tree.flush()?;
        }
        Ok(())
    }
}

/// A simple constructor for `Err(TransactionError::Abort(_))`
pub fn abort<A, T>(t: T) -> ConflictableTransactionResult<A, T> {
    Err(ConflictableTransactionError::Abort(t))
}

/// A type that may be transacted on in sled transactions.
pub trait Transactional<E = ()> {
    /// An internal reference to an internal proxy type that
    /// mediates transactional reads and writes.
    type View;

    /// An internal function for creating a top-level
    /// transactional structure.
    fn make_overlay(&self) -> Result<TransactionalTrees>;

    /// An internal function for viewing the transactional
    /// subcomponents based on the top-level transactional
    /// structure.
    fn view_overlay(overlay: &TransactionalTrees) -> Self::View;

    /// Runs a transaction, possibly retrying the passed-in closure if
    /// a concurrent conflict is detected that would cause a violation
    /// of serializability. This is the only trait method that
    /// you're most likely to use directly.
    fn transaction<F, A>(&self, f: F) -> TransactionResult<A, E>
    where
        F: Fn(&Self::View) -> ConflictableTransactionResult<A, E>,
    {
        loop {
            let tt = self.make_overlay()?;
            let view = Self::view_overlay(&tt);

            // NB locks must exist until this function returns.
            let locks = if let Ok(l) = tt.stage() {
                l
            } else {
                tt.unstage();
                continue;
            };
            let ret = f(&view);
            if !tt.validate() {
                tt.unstage();
                continue;
            }
            match ret {
                Ok(r) => {
                    let guard = pin();
                    tt.commit(&guard)?;
                    drop(locks);
                    tt.flush_if_configured()?;
                    return Ok(r);
                }
                Err(ConflictableTransactionError::Abort(e)) => {
                    return Err(TransactionError::Abort(e));
                }
                Err(ConflictableTransactionError::Conflict) => continue,
                Err(ConflictableTransactionError::Storage(other)) => {
                    return Err(TransactionError::Storage(other));
                }
            }
        }
    }
}

impl<E> Transactional<E> for &Tree {
    type View = TransactionalTree;

    fn make_overlay(&self) -> Result<TransactionalTrees> {
        Ok(TransactionalTrees {
            inner: vec![TransactionalTree::from_tree(self)],
        })
    }

    fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
        overlay.inner[0].clone()
    }
}

impl<E> Transactional<E> for &&Tree {
    type View = TransactionalTree;

    fn make_overlay(&self) -> Result<TransactionalTrees> {
        Ok(TransactionalTrees {
            inner: vec![TransactionalTree::from_tree(*self)],
        })
    }

    fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
        overlay.inner[0].clone()
    }
}

impl<E> Transactional<E> for Tree {
    type View = TransactionalTree;

    fn make_overlay(&self) -> Result<TransactionalTrees> {
        Ok(TransactionalTrees {
            inner: vec![TransactionalTree::from_tree(self)],
        })
    }

    fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
        overlay.inner[0].clone()
    }
}

impl<E> Transactional<E> for [Tree] {
    type View = Vec<TransactionalTree>;

    fn make_overlay(&self) -> Result<TransactionalTrees> {
        let same_db = self.windows(2).all(|w| {
            let path_1 = w[0].context.get_path();
            let path_2 = w[1].context.get_path();
            path_1 == path_2
        });
        if !same_db {
            return Err(Error::Unsupported(
                "cannot use trees from multiple databases in the same transaction".into(),
            ));
        }

        Ok(TransactionalTrees {
            inner: self
                .iter()
                .map(|t| TransactionalTree::from_tree(t))
                .collect(),
        })
    }

    fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
        overlay.inner.clone()
    }
}

impl<E> Transactional<E> for [&Tree] {
    type View = Vec<TransactionalTree>;

    fn make_overlay(&self) -> Result<TransactionalTrees> {
        let same_db = self.windows(2).all(|w| {
            let path_1 = w[0].context.get_path();
            let path_2 = w[1].context.get_path();
            path_1 == path_2
        });
        if !same_db {
            return Err(Error::Unsupported(
                "cannot use trees from multiple databases in the same transaction".into(),
            ));
        }

        Ok(TransactionalTrees {
            inner: self
                .iter()
                .map(|&t| TransactionalTree::from_tree(t))
                .collect(),
        })
    }

    fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
        overlay.inner.clone()
    }
}

macro_rules! repeat_type {
    ($t:ty, ($literal:literal)) => {
        ($t,)
    };
    ($t:ty, ($($literals:literal),+)) => {
        repeat_type!(IMPL $t, (), ($($literals),*))
    };
    (IMPL $t:ty, (), ($first:literal, $($rest:literal),*)) => {
        repeat_type!(IMPL $t, ($t), ($($rest),*))
    };
    (IMPL $t:ty, ($($partial:tt),*), ($first:literal, $($rest:literal),*)) => {
        repeat_type!(IMPL $t, ($t, $($partial),*), ($($rest),*))
    };
    (IMPL $t:ty, ($($partial:tt),*), ($last:literal)) => {
        ($($partial),*, $t)
    };
}

macro_rules! impl_transactional_tuple_trees {
    ($($indices:tt),+) => {
        impl<E> Transactional<E> for repeat_type!(&Tree, ($($indices),+)) {
            type View = repeat_type!(TransactionalTree, ($($indices),+));

            fn make_overlay(&self) -> Result<TransactionalTrees> {
                let mut paths = vec![];
                $(
                    paths.push(self.$indices.context.get_path());
                )+
                if !paths.windows(2).all(|w| {
                    w[0] == w[1]
                }) {
                    return Err(Error::Unsupported(
                        "cannot use trees from multiple databases in the same transaction".into(),
                    ));
                }

                Ok(TransactionalTrees {
                    inner: vec![
                        $(
                            TransactionalTree::from_tree(self.$indices)
                        ),+
                    ],
                })
            }

            fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
                (
                    $(
                        overlay.inner[$indices].clone()
                    ),+,
                )
            }
        }
    };
}

impl_transactional_tuple_trees!(0);
impl_transactional_tuple_trees!(0, 1);
impl_transactional_tuple_trees!(0, 1, 2);
impl_transactional_tuple_trees!(0, 1, 2, 3);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);