1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
//! Fully serializable (ACID) multi-`Tree` transactions
//!
//! # Examples
//! ```
//! # use sled::{transaction::TransactionResult, Config};
//! # fn main() -> TransactionResult<()> {
//!
//! let config = Config::new().temporary(true);
//! let db1 = config.open().unwrap();
//! let db = db1.open_tree(b"a").unwrap();
//!
//! // Use write-only transactions as a writebatch:
//! db.transaction(|db| {
//! db.insert(b"k1", b"cats")?;
//! db.insert(b"k2", b"dogs")?;
//! Ok(())
//! })?;
//!
//! // Atomically swap two items:
//! db.transaction(|db| {
//! let v1_option = db.remove(b"k1")?;
//! let v1 = v1_option.unwrap();
//! let v2_option = db.remove(b"k2")?;
//! let v2 = v2_option.unwrap();
//!
//! db.insert(b"k1", v2)?;
//! db.insert(b"k2", v1)?;
//!
//! Ok(())
//! })?;
//!
//! assert_eq!(&db.get(b"k1")?.unwrap(), b"dogs");
//! assert_eq!(&db.get(b"k2")?.unwrap(), b"cats");
//! # Ok(())
//! # }
//! ```
//!
//! Transactions also work on tuples of `Tree`s,
//! preserving serializable ACID semantics!
//! In this example, we treat two trees like a
//! work queue, atomically apply updates to
//! data and move them from the unprocessed `Tree`
//! to the processed `Tree`.
//!
//! ```
//! # use sled::{transaction::{TransactionResult, Transactional}, Config};
//! # fn main() -> TransactionResult<()> {
//!
//! let config = Config::new().temporary(true);
//! let db = config.open().unwrap();
//!
//! let unprocessed = db.open_tree(b"unprocessed items").unwrap();
//! let processed = db.open_tree(b"processed items").unwrap();
//!
//! // An update somehow gets into the tree, which we
//! // later trigger the atomic processing of.
//! unprocessed.insert(b"k3", b"ligers").unwrap();
//!
//! // Atomically process the new item and move it
//! // between `Tree`s.
//! (&unprocessed, &processed)
//! .transaction(|(unprocessed, processed)| {
//! let unprocessed_item = unprocessed.remove(b"k3")?.unwrap();
//! let mut processed_item = b"yappin' ".to_vec();
//! processed_item.extend_from_slice(&unprocessed_item);
//! processed.insert(b"k3", processed_item)?;
//! Ok(())
//! })?;
//!
//! assert_eq!(unprocessed.get(b"k3").unwrap(), None);
//! assert_eq!(&processed.get(b"k3").unwrap().unwrap(), b"yappin' ligers");
//! # Ok(())
//! # }
//! ```
#![allow(clippy::module_name_repetitions)]
use std::{cell::RefCell, fmt, rc::Rc};
#[cfg(not(feature = "testing"))]
use std::collections::HashMap as Map;
// we avoid HashMap while testing because
// it makes tests non-deterministic
#[cfg(feature = "testing")]
use std::collections::BTreeMap as Map;
use crate::{
concurrency_control, pin, Batch, Error, Guard, IVec, Protector, Result,
Tree,
};
/// A transaction that will
/// be applied atomically to the
/// Tree.
#[derive(Clone)]
pub struct TransactionalTree {
pub(super) tree: Tree,
pub(super) writes: Rc<RefCell<Map<IVec, Option<IVec>>>>,
pub(super) read_cache: Rc<RefCell<Map<IVec, Option<IVec>>>>,
pub(super) flush_on_commit: Rc<RefCell<bool>>,
}
/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum UnabortableTransactionError {
/// An internal conflict has occurred and the `transaction` method will
/// retry the passed-in closure until it succeeds. This should never be
/// returned directly from the user's closure, as it will create an
/// infinite loop that never returns. This is why it is hidden.
Conflict,
/// A serious underlying storage issue has occurred that requires
/// attention from an operator or a remediating system, such as
/// corruption.
Storage(Error),
}
impl fmt::Display for UnabortableTransactionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use UnabortableTransactionError::*;
match self {
Conflict => write!(f, "Conflict during transaction"),
Storage(e) => e.fmt(f),
}
}
}
impl std::error::Error for UnabortableTransactionError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
UnabortableTransactionError::Storage(ref e) => Some(e),
_ => None,
}
}
}
pub(crate) type UnabortableTransactionResult<T> =
std::result::Result<T, UnabortableTransactionError>;
impl From<Error> for UnabortableTransactionError {
fn from(error: Error) -> Self {
UnabortableTransactionError::Storage(error)
}
}
impl<E> From<UnabortableTransactionError> for ConflictableTransactionError<E> {
fn from(error: UnabortableTransactionError) -> Self {
match error {
UnabortableTransactionError::Conflict => {
ConflictableTransactionError::Conflict
}
UnabortableTransactionError::Storage(error) => {
ConflictableTransactionError::Storage(error)
}
}
}
}
/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum ConflictableTransactionError<T = Error> {
/// A user-provided error type that indicates the transaction should abort.
/// This is passed into the return value of `transaction` as a direct Err
/// instance, rather than forcing users to interact with this enum
/// directly.
Abort(T),
#[doc(hidden)]
/// An internal conflict has occurred and the `transaction` method will
/// retry the passed-in closure until it succeeds. This should never be
/// returned directly from the user's closure, as it will create an
/// infinite loop that never returns. This is why it is hidden.
Conflict,
/// A serious underlying storage issue has occurred that requires
/// attention from an operator or a remediating system, such as
/// corruption.
Storage(Error),
}
impl<E: fmt::Display> fmt::Display for ConflictableTransactionError<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use ConflictableTransactionError::*;
match self {
Abort(e) => e.fmt(f),
Conflict => write!(f, "Conflict during transaction"),
Storage(e) => e.fmt(f),
}
}
}
impl<E: std::error::Error> std::error::Error
for ConflictableTransactionError<E>
{
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
ConflictableTransactionError::Storage(ref e) => Some(e),
_ => None,
}
}
}
/// An error type that is returned from the closure
/// passed to the `transaction` method.
#[derive(Debug, Clone, PartialEq)]
pub enum TransactionError<T = Error> {
/// A user-provided error type that indicates the transaction should abort.
/// This is passed into the return value of `transaction` as a direct Err
/// instance, rather than forcing users to interact with this enum
/// directly.
Abort(T),
/// A serious underlying storage issue has occurred that requires
/// attention from an operator or a remediating system, such as
/// corruption.
Storage(Error),
}
impl<E: fmt::Display> fmt::Display for TransactionError<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use TransactionError::*;
match self {
Abort(e) => e.fmt(f),
Storage(e) => e.fmt(f),
}
}
}
impl<E: std::error::Error> std::error::Error for TransactionError<E> {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
TransactionError::Storage(ref e) => Some(e),
_ => None,
}
}
}
/// A transaction-related `Result` which is used for transparently handling
/// concurrency-related conflicts when running transaction closures.
pub type ConflictableTransactionResult<T, E = ()> =
std::result::Result<T, ConflictableTransactionError<E>>;
impl<T> From<Error> for ConflictableTransactionError<T> {
fn from(error: Error) -> Self {
ConflictableTransactionError::Storage(error)
}
}
/// A transaction-related `Result` which is used for returning the
/// final result of a transaction after potentially running the provided
/// closure several times due to underlying conflicts.
pub type TransactionResult<T, E = ()> =
std::result::Result<T, TransactionError<E>>;
impl<T> From<Error> for TransactionError<T> {
fn from(error: Error) -> Self {
TransactionError::Storage(error)
}
}
impl TransactionalTree {
/// Set a key to a new value
pub fn insert<K, V>(
&self,
key: K,
value: V,
) -> UnabortableTransactionResult<Option<IVec>>
where
K: AsRef<[u8]> + Into<IVec>,
V: Into<IVec>,
{
let old = self.get(key.as_ref())?;
let mut writes = self.writes.borrow_mut();
let _last_write =
writes.insert(key.into(), Some(value.into()));
Ok(old)
}
/// Remove a key
pub fn remove<K>(
&self,
key: K,
) -> UnabortableTransactionResult<Option<IVec>>
where
K: AsRef<[u8]> + Into<IVec>,
{
let old = self.get(key.as_ref());
let mut writes = self.writes.borrow_mut();
let _last_write = writes.insert(key.into(), None);
old
}
/// Get the value associated with a key
pub fn get<K: AsRef<[u8]>>(
&self,
key: K,
) -> UnabortableTransactionResult<Option<IVec>> {
let writes = self.writes.borrow();
if let Some(first_try) = writes.get(key.as_ref()) {
return Ok(first_try.clone());
}
let mut reads = self.read_cache.borrow_mut();
if let Some(second_try) = reads.get(key.as_ref()) {
return Ok(second_try.clone());
}
// not found in a cache, need to hit the backing db
let mut guard = pin();
let get = loop {
if let Ok(get) = self.tree.get_inner(key.as_ref(), &mut guard)? {
break get;
}
};
let last = reads.insert(key.as_ref().into(), get.clone());
assert!(last.is_none());
Ok(get)
}
/// Atomically apply multiple inserts and removals.
pub fn apply_batch(
&self,
batch: &Batch,
) -> UnabortableTransactionResult<()> {
for (k, v_opt) in &batch.writes {
if let Some(v) = v_opt {
let _old = self.insert(k, v)?;
} else {
let _old = self.remove(k)?;
}
}
Ok(())
}
/// Flush the database before returning from the transaction.
pub fn flush(&self) {
*self.flush_on_commit.borrow_mut() = true;
}
/// Generate a monotonic ID. Not guaranteed to be
/// contiguous or idempotent, can produce different values in the
/// same transaction in case of conflicts.
/// Written to disk every `idgen_persist_interval`
/// operations, followed by a blocking flush. During recovery, we
/// take the last recovered generated ID and add 2x
/// the `idgen_persist_interval` to it. While persisting, if the
/// previous persisted counter wasn't synced to disk yet, we will do
/// a blocking flush to fsync the latest counter, ensuring
/// that we will never give out the same counter twice.
pub fn generate_id(&self) -> Result<u64> {
self.tree.context.pagecache.generate_id_inner()
}
fn unstage(&self) {
unimplemented!()
}
const fn validate(&self) -> bool {
true
}
fn commit(&self) -> Result<()> {
let writes = self.writes.borrow();
let mut guard = pin();
for (k, v_opt) in &*writes {
while self.tree.insert_inner(k, v_opt.clone(), &mut guard)?.is_err()
{
}
}
Ok(())
}
fn from_tree(tree: &Tree) -> Self {
Self {
tree: tree.clone(),
writes: Default::default(),
read_cache: Default::default(),
flush_on_commit: Default::default(),
}
}
}
/// A type which allows for pluggable transactional capabilities
pub struct TransactionalTrees {
inner: Vec<TransactionalTree>,
}
impl TransactionalTrees {
fn stage(&self) -> UnabortableTransactionResult<Protector<'_>> {
Ok(concurrency_control::write())
}
fn unstage(&self) {
for tree in &self.inner {
tree.unstage();
}
}
fn validate(&self) -> bool {
for tree in &self.inner {
if !tree.validate() {
return false;
}
}
true
}
fn commit(&self, guard: &Guard) -> Result<()> {
let peg = self.inner[0].tree.context.pin_log(guard)?;
for tree in &self.inner {
tree.commit()?;
}
// when the peg drops, it ensures all updates
// written to the log since its creation are
// recovered atomically
peg.seal_batch()
}
fn flush_if_configured(&self) -> Result<()> {
let mut should_flush = None;
for tree in &self.inner {
if *tree.flush_on_commit.borrow() {
should_flush = Some(tree);
break;
}
}
if let Some(tree) = should_flush {
tree.tree.flush()?;
}
Ok(())
}
}
/// A simple constructor for `Err(TransactionError::Abort(_))`
pub fn abort<A, T>(t: T) -> ConflictableTransactionResult<A, T> {
Err(ConflictableTransactionError::Abort(t))
}
/// A type that may be transacted on in sled transactions.
pub trait Transactional<E = ()> {
/// An internal reference to an internal proxy type that
/// mediates transactional reads and writes.
type View;
/// An internal function for creating a top-level
/// transactional structure.
fn make_overlay(&self) -> Result<TransactionalTrees>;
/// An internal function for viewing the transactional
/// subcomponents based on the top-level transactional
/// structure.
fn view_overlay(overlay: &TransactionalTrees) -> Self::View;
/// Runs a transaction, possibly retrying the passed-in closure if
/// a concurrent conflict is detected that would cause a violation
/// of serializability. This is the only trait method that
/// you're most likely to use directly.
fn transaction<F, A>(&self, f: F) -> TransactionResult<A, E>
where
F: Fn(&Self::View) -> ConflictableTransactionResult<A, E>,
{
loop {
let tt = self.make_overlay()?;
let view = Self::view_overlay(&tt);
// NB locks must exist until this function returns.
let locks = if let Ok(l) = tt.stage() {
l
} else {
tt.unstage();
continue;
};
let ret = f(&view);
if !tt.validate() {
tt.unstage();
continue;
}
match ret {
Ok(r) => {
let guard = pin();
tt.commit(&guard)?;
drop(locks);
tt.flush_if_configured()?;
return Ok(r);
}
Err(ConflictableTransactionError::Abort(e)) => {
return Err(TransactionError::Abort(e));
}
Err(ConflictableTransactionError::Conflict) => continue,
Err(ConflictableTransactionError::Storage(other)) => {
return Err(TransactionError::Storage(other));
}
}
}
}
}
impl<E> Transactional<E> for &Tree {
type View = TransactionalTree;
fn make_overlay(&self) -> Result<TransactionalTrees> {
Ok(TransactionalTrees {
inner: vec![TransactionalTree::from_tree(self)],
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
overlay.inner[0].clone()
}
}
impl<E> Transactional<E> for &&Tree {
type View = TransactionalTree;
fn make_overlay(&self) -> Result<TransactionalTrees> {
Ok(TransactionalTrees {
inner: vec![TransactionalTree::from_tree(*self)],
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
overlay.inner[0].clone()
}
}
impl<E> Transactional<E> for Tree {
type View = TransactionalTree;
fn make_overlay(&self) -> Result<TransactionalTrees> {
Ok(TransactionalTrees {
inner: vec![TransactionalTree::from_tree(self)],
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
overlay.inner[0].clone()
}
}
impl<E> Transactional<E> for [Tree] {
type View = Vec<TransactionalTree>;
fn make_overlay(&self) -> Result<TransactionalTrees> {
let same_db = self.windows(2).all(|w| {
let path_1 = w[0].context.get_path();
let path_2 = w[1].context.get_path();
path_1 == path_2
});
if !same_db {
return Err(Error::Unsupported(
"cannot use trees from multiple databases in the same transaction".into(),
));
}
Ok(TransactionalTrees {
inner: self
.iter()
.map(|t| TransactionalTree::from_tree(t))
.collect(),
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
overlay.inner.clone()
}
}
impl<E> Transactional<E> for [&Tree] {
type View = Vec<TransactionalTree>;
fn make_overlay(&self) -> Result<TransactionalTrees> {
let same_db = self.windows(2).all(|w| {
let path_1 = w[0].context.get_path();
let path_2 = w[1].context.get_path();
path_1 == path_2
});
if !same_db {
return Err(Error::Unsupported(
"cannot use trees from multiple databases in the same transaction".into(),
));
}
Ok(TransactionalTrees {
inner: self
.iter()
.map(|&t| TransactionalTree::from_tree(t))
.collect(),
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
overlay.inner.clone()
}
}
macro_rules! repeat_type {
($t:ty, ($literal:literal)) => {
($t,)
};
($t:ty, ($($literals:literal),+)) => {
repeat_type!(IMPL $t, (), ($($literals),*))
};
(IMPL $t:ty, (), ($first:literal, $($rest:literal),*)) => {
repeat_type!(IMPL $t, ($t), ($($rest),*))
};
(IMPL $t:ty, ($($partial:tt),*), ($first:literal, $($rest:literal),*)) => {
repeat_type!(IMPL $t, ($t, $($partial),*), ($($rest),*))
};
(IMPL $t:ty, ($($partial:tt),*), ($last:literal)) => {
($($partial),*, $t)
};
}
macro_rules! impl_transactional_tuple_trees {
($($indices:tt),+) => {
impl<E> Transactional<E> for repeat_type!(&Tree, ($($indices),+)) {
type View = repeat_type!(TransactionalTree, ($($indices),+));
fn make_overlay(&self) -> Result<TransactionalTrees> {
let mut paths = vec![];
$(
paths.push(self.$indices.context.get_path());
)+
if !paths.windows(2).all(|w| {
w[0] == w[1]
}) {
return Err(Error::Unsupported(
"cannot use trees from multiple databases in the same transaction".into(),
));
}
Ok(TransactionalTrees {
inner: vec![
$(
TransactionalTree::from_tree(self.$indices)
),+
],
})
}
fn view_overlay(overlay: &TransactionalTrees) -> Self::View {
(
$(
overlay.inner[$indices].clone()
),+,
)
}
}
};
}
impl_transactional_tuple_trees!(0);
impl_transactional_tuple_trees!(0, 1);
impl_transactional_tuple_trees!(0, 1, 2);
impl_transactional_tuple_trees!(0, 1, 2, 3);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);
impl_transactional_tuple_trees!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);