Struct sled::Tree

source ·
pub struct Tree(/* private fields */);
Expand description

A flash-sympathetic persistent lock-free B+ tree.

A Tree represents a single logical keyspace / namespace / bucket.

Separate Trees may be opened to separate concerns using Db::open_tree.

Db implements Deref<Target = Tree> such that a Db acts like the “default” Tree. This is the only Tree that cannot be deleted via Db::drop_tree.

Examples

use sled::IVec;

let db: sled::Db = sled::open("db")?;
db.insert(b"yo!", b"v1".to_vec());
assert_eq!(db.get(b"yo!"), Ok(Some(IVec::from(b"v1"))));

// Atomic compare-and-swap.
db.compare_and_swap(
    b"yo!",      // key
    Some(b"v1"), // old value, None for not present
    Some(b"v2"), // new value, None for delete
)?;

// Iterates over key-value pairs, starting at the given key.
let scan_key: &[u8] = b"a non-present key before yo!";
let mut iter = db.range(scan_key..);
assert_eq!(
    iter.next().unwrap(),
    Ok((IVec::from(b"yo!"), IVec::from(b"v2")))
);
assert_eq!(iter.next(), None);

db.remove(b"yo!");
assert_eq!(db.get(b"yo!"), Ok(None));

let other_tree: sled::Tree = db.open_tree(b"cool db facts")?;
other_tree.insert(
    b"k1",
    &b"a Db acts like a Tree due to implementing Deref<Target = Tree>"[..]
)?;

Implementations§

source§

impl Tree

source

pub fn insert<K, V>(&self, key: K, value: V) -> Result<Option<IVec>>where K: AsRef<[u8]>, V: Into<IVec>,

Insert a key to a new value, returning the last value if it was set.

Examples
assert_eq!(db.insert(&[1, 2, 3], vec![0]), Ok(None));
assert_eq!(db.insert(&[1, 2, 3], vec![1]), Ok(Some(sled::IVec::from(&[0]))));
source

pub fn transaction<F, A, E>(&self, f: F) -> TransactionResult<A, E>where F: Fn(&TransactionalTree) -> ConflictableTransactionResult<A, E>,

Perform a multi-key serializable transaction.

Examples
// Use write-only transactions as a writebatch:
db.transaction(|tx_db| {
    tx_db.insert(b"k1", b"cats")?;
    tx_db.insert(b"k2", b"dogs")?;
    Ok(())
})?;

// Atomically swap two items:
db.transaction(|tx_db| {
    let v1_option = tx_db.remove(b"k1")?;
    let v1 = v1_option.unwrap();
    let v2_option = tx_db.remove(b"k2")?;
    let v2 = v2_option.unwrap();

    tx_db.insert(b"k1", v2)?;
    tx_db.insert(b"k2", v1)?;

    Ok(())
})?;

assert_eq!(&db.get(b"k1")?.unwrap(), b"dogs");
assert_eq!(&db.get(b"k2")?.unwrap(), b"cats");

A transaction may return information from an intentionally-cancelled transaction by using the abort function inside the closure in combination with the try operator.

use sled::{transaction::{abort, TransactionError, TransactionResult}, Config};

#[derive(Debug, PartialEq)]
struct MyBullshitError;

fn main() -> TransactionResult<(), MyBullshitError> {
    let config = Config::new().temporary(true);
    let db = config.open()?;

    // Use write-only transactions as a writebatch:
    let res = db.transaction(|tx_db| {
        tx_db.insert(b"k1", b"cats")?;
        tx_db.insert(b"k2", b"dogs")?;
        // aborting will cause all writes to roll-back.
        if true {
            abort(MyBullshitError)?;
        }
        Ok(42)
    }).unwrap_err();

    assert_eq!(res, TransactionError::Abort(MyBullshitError));
    assert_eq!(db.get(b"k1")?, None);
    assert_eq!(db.get(b"k2")?, None);

    Ok(())
}

Transactions also work on tuples of Trees, preserving serializable ACID semantics! In this example, we treat two trees like a work queue, atomically apply updates to data and move them from the unprocessed Tree to the processed Tree.

use sled::Transactional;

let unprocessed = db.open_tree(b"unprocessed items")?;
let processed = db.open_tree(b"processed items")?;

// An update somehow gets into the tree, which we
// later trigger the atomic processing of.
unprocessed.insert(b"k3", b"ligers")?;

// Atomically process the new item and move it
// between `Tree`s.
(&unprocessed, &processed)
    .transaction(|(tx_unprocessed, tx_processed)| {
        let unprocessed_item = tx_unprocessed.remove(b"k3")?.unwrap();
        let mut processed_item = b"yappin' ".to_vec();
        processed_item.extend_from_slice(&unprocessed_item);
        tx_processed.insert(b"k3", processed_item)?;
        Ok(())
    })?;

assert_eq!(unprocessed.get(b"k3").unwrap(), None);
assert_eq!(&processed.get(b"k3").unwrap().unwrap(), b"yappin' ligers");
source

pub fn apply_batch(&self, batch: Batch) -> Result<()>

Create a new batched update that can be atomically applied.

It is possible to apply a Batch in a transaction as well, which is the way you can apply a Batch to multiple Trees atomically.

Examples
db.insert("key_0", "val_0")?;

let mut batch = sled::Batch::default();
batch.insert("key_a", "val_a");
batch.insert("key_b", "val_b");
batch.insert("key_c", "val_c");
batch.remove("key_0");

db.apply_batch(batch)?;
// key_0 no longer exists, and key_a, key_b, and key_c
// now do exist.
source

pub fn get<K: AsRef<[u8]>>(&self, key: K) -> Result<Option<IVec>>

Retrieve a value from the Tree if it exists.

Examples
db.insert(&[0], vec![0])?;
assert_eq!(db.get(&[0]), Ok(Some(sled::IVec::from(vec![0]))));
assert_eq!(db.get(&[1]), Ok(None));
source

pub fn remove<K: AsRef<[u8]>>(&self, key: K) -> Result<Option<IVec>>

Delete a value, returning the old value if it existed.

Examples
db.insert(&[1], vec![1]);
assert_eq!(db.remove(&[1]), Ok(Some(sled::IVec::from(vec![1]))));
assert_eq!(db.remove(&[1]), Ok(None));
source

pub fn compare_and_swap<K, OV, NV>( &self, key: K, old: Option<OV>, new: Option<NV> ) -> Result<Result<(), CompareAndSwapError>>where K: AsRef<[u8]>, OV: AsRef<[u8]>, NV: Into<IVec>,

Compare and swap. Capable of unique creation, conditional modification, or deletion. If old is None, this will only set the value if it doesn’t exist yet. If new is None, will delete the value if old is correct. If both old and new are Some, will modify the value if old is correct.

It returns Ok(Ok(())) if operation finishes successfully.

If it fails it returns: - Ok(Err(CompareAndSwapError(current, proposed))) if operation failed to setup a new value. CompareAndSwapError contains current and proposed values. - Err(Error::Unsupported) if the database is opened in read-only mode.

Examples
// unique creation
assert_eq!(
    db.compare_and_swap(&[1], None as Option<&[u8]>, Some(&[10])),
    Ok(Ok(()))
);

// conditional modification
assert_eq!(
    db.compare_and_swap(&[1], Some(&[10]), Some(&[20])),
    Ok(Ok(()))
);

// failed conditional modification -- the current value is returned in
// the error variant
let operation = db.compare_and_swap(&[1], Some(&[30]), Some(&[40]));
assert!(operation.is_ok()); // the operation succeeded
let modification = operation.unwrap();
assert!(modification.is_err());
let actual_value = modification.unwrap_err();
assert_eq!(actual_value.current.map(|ivec| ivec.to_vec()), Some(vec![20]));

// conditional deletion
assert_eq!(
    db.compare_and_swap(&[1], Some(&[20]), None as Option<&[u8]>),
    Ok(Ok(()))
);
assert_eq!(db.get(&[1]), Ok(None));
source

pub fn update_and_fetch<K, V, F>(&self, key: K, f: F) -> Result<Option<IVec>>where K: AsRef<[u8]>, F: FnMut(Option<&[u8]>) -> Option<V>, V: Into<IVec>,

Fetch the value, apply a function to it and return the result.

Note

This may call the function multiple times if the value has been changed from other threads in the meantime.

Examples
use sled::{Config, Error, IVec};
use std::convert::TryInto;

let config = Config::new().temporary(true);
let db = config.open()?;

fn u64_to_ivec(number: u64) -> IVec {
    IVec::from(number.to_be_bytes().to_vec())
}

let zero = u64_to_ivec(0);
let one = u64_to_ivec(1);
let two = u64_to_ivec(2);
let three = u64_to_ivec(3);

fn increment(old: Option<&[u8]>) -> Option<Vec<u8>> {
    let number = match old {
        Some(bytes) => {
            let array: [u8; 8] = bytes.try_into().unwrap();
            let number = u64::from_be_bytes(array);
            number + 1
        }
        None => 0,
    };

    Some(number.to_be_bytes().to_vec())
}

assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(zero)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(one)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(two)));
assert_eq!(db.update_and_fetch("counter", increment), Ok(Some(three)));
source

pub fn fetch_and_update<K, V, F>(&self, key: K, f: F) -> Result<Option<IVec>>where K: AsRef<[u8]>, F: FnMut(Option<&[u8]>) -> Option<V>, V: Into<IVec>,

Fetch the value, apply a function to it and return the previous value.

Note

This may call the function multiple times if the value has been changed from other threads in the meantime.

Examples
use sled::{Config, Error, IVec};
use std::convert::TryInto;

let config = Config::new().temporary(true);
let db = config.open()?;

fn u64_to_ivec(number: u64) -> IVec {
    IVec::from(number.to_be_bytes().to_vec())
}

let zero = u64_to_ivec(0);
let one = u64_to_ivec(1);
let two = u64_to_ivec(2);

fn increment(old: Option<&[u8]>) -> Option<Vec<u8>> {
    let number = match old {
        Some(bytes) => {
            let array: [u8; 8] = bytes.try_into().unwrap();
            let number = u64::from_be_bytes(array);
            number + 1
        }
        None => 0,
    };

    Some(number.to_be_bytes().to_vec())
}

assert_eq!(db.fetch_and_update("counter", increment), Ok(None));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(zero)));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(one)));
assert_eq!(db.fetch_and_update("counter", increment), Ok(Some(two)));
source

pub fn watch_prefix<P: AsRef<[u8]>>(&self, prefix: P) -> Subscriber

Subscribe to Events that happen to keys that have the specified prefix. Events for particular keys are guaranteed to be witnessed in the same order by all threads, but threads may witness different interleavings of Events across different keys. If subscribers don’t keep up with new writes, they will cause new writes to block. There is a buffer of 1024 items per Subscriber. This can be used to build reactive and replicated systems.

Subscriber implements both Iterator<Item = Event> and Future<Output=Option<Event>>

Examples

Synchronous, blocking subscriber:

// watch all events by subscribing to the empty prefix
let mut subscriber = db.watch_prefix(vec![]);

let tree_2 = db.clone();
let thread = std::thread::spawn(move || {
    db.insert(vec![0], vec![1])
});

// `Subscription` implements `Iterator<Item=Event>`
for event in subscriber.take(1) {
    match event {
        sled::Event::Insert{ key, value } => assert_eq!(key.as_ref(), &[0]),
        sled::Event::Remove {key } => {}
    }
}

Aynchronous, non-blocking subscriber:

Subscription implements Future<Output=Option<Event>>.

while let Some(event) = (&mut subscriber).await { /* use it */ }

source

pub fn flush(&self) -> Result<usize>

Synchronously flushes all dirty IO buffers and calls fsync. If this succeeds, it is guaranteed that all previous writes will be recovered if the system crashes. Returns the number of bytes flushed during this call.

Flushing can take quite a lot of time, and you should measure the performance impact of using it on realistic sustained workloads running on realistic hardware.

source

pub async fn flush_async(&self) -> Result<usize>

Asynchronously flushes all dirty IO buffers and calls fsync. If this succeeds, it is guaranteed that all previous writes will be recovered if the system crashes. Returns the number of bytes flushed during this call.

Flushing can take quite a lot of time, and you should measure the performance impact of using it on realistic sustained workloads running on realistic hardware.

source

pub fn contains_key<K: AsRef<[u8]>>(&self, key: K) -> Result<bool>

Returns true if the Tree contains a value for the specified key.

Examples
db.insert(&[0], vec![0])?;
assert!(db.contains_key(&[0])?);
assert!(!db.contains_key(&[1])?);
source

pub fn get_lt<K>(&self, key: K) -> Result<Option<(IVec, IVec)>>where K: AsRef<[u8]>,

Retrieve the key and value before the provided key, if one exists.

Examples
use sled::IVec;
for i in 0..10 {
    db.insert(&[i], vec![i])
        .expect("should write successfully");
}

assert_eq!(db.get_lt(&[]), Ok(None));
assert_eq!(db.get_lt(&[0]), Ok(None));
assert_eq!(
    db.get_lt(&[1]),
    Ok(Some((IVec::from(&[0]), IVec::from(&[0]))))
);
assert_eq!(
    db.get_lt(&[9]),
    Ok(Some((IVec::from(&[8]), IVec::from(&[8]))))
);
assert_eq!(
    db.get_lt(&[10]),
    Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
assert_eq!(
    db.get_lt(&[255]),
    Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
source

pub fn get_gt<K>(&self, key: K) -> Result<Option<(IVec, IVec)>>where K: AsRef<[u8]>,

Retrieve the next key and value from the Tree after the provided key.

Note

The order follows the Ord implementation for Vec<u8>:

[] < [0] < [255] < [255, 0] < [255, 255] ...

To retain the ordering of numerical types use big endian reprensentation

Examples
use sled::IVec;
for i in 0..10 {
    db.insert(&[i], vec![i])?;
}

assert_eq!(
    db.get_gt(&[]),
    Ok(Some((IVec::from(&[0]), IVec::from(&[0]))))
);
assert_eq!(
    db.get_gt(&[0]),
    Ok(Some((IVec::from(&[1]), IVec::from(&[1]))))
);
assert_eq!(
    db.get_gt(&[1]),
    Ok(Some((IVec::from(&[2]), IVec::from(&[2]))))
);
assert_eq!(
    db.get_gt(&[8]),
    Ok(Some((IVec::from(&[9]), IVec::from(&[9]))))
);
assert_eq!(db.get_gt(&[9]), Ok(None));

db.insert(500u16.to_be_bytes(), vec![10]);
assert_eq!(
    db.get_gt(&499u16.to_be_bytes()),
    Ok(Some((IVec::from(&500u16.to_be_bytes()), IVec::from(&[10]))))
);
source

pub fn merge<K, V>(&self, key: K, value: V) -> Result<Option<IVec>>where K: AsRef<[u8]>, V: AsRef<[u8]>,

Merge state directly into a given key’s value using the configured merge operator. This allows state to be written into a value directly, without any read-modify-write steps. Merge operators can be used to implement arbitrary data structures.

Calling merge will return an Unsupported error if it is called without first setting a merge operator function.

Merge operators are shared by all instances of a particular Tree. Different merge operators may be set on different Trees.

Examples
use sled::IVec;

fn concatenate_merge(
  _key: &[u8],               // the key being merged
  old_value: Option<&[u8]>,  // the previous value, if one existed
  merged_bytes: &[u8]        // the new bytes being merged in
) -> Option<Vec<u8>> {       // set the new value, return None to delete
  let mut ret = old_value
    .map(|ov| ov.to_vec())
    .unwrap_or_else(|| vec![]);

  ret.extend_from_slice(merged_bytes);

  Some(ret)
}

db.set_merge_operator(concatenate_merge);

let k = b"k1";

db.insert(k, vec![0]);
db.merge(k, vec![1]);
db.merge(k, vec![2]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![0, 1, 2]))));

// Replace previously merged data. The merge function will not be called.
db.insert(k, vec![3]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![3]))));

// Merges on non-present values will cause the merge function to be called
// with `old_value == None`. If the merge function returns something (which it
// does, in this case) a new value will be inserted.
db.remove(k);
db.merge(k, vec![4]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![4]))));
source

pub fn set_merge_operator(&self, merge_operator: impl MergeOperator + 'static)

Sets a merge operator for use with the merge function.

Merge state directly into a given key’s value using the configured merge operator. This allows state to be written into a value directly, without any read-modify-write steps. Merge operators can be used to implement arbitrary data structures.

Panics

Calling merge will panic if no merge operator has been configured.

Examples
use sled::IVec;

fn concatenate_merge(
  _key: &[u8],               // the key being merged
  old_value: Option<&[u8]>,  // the previous value, if one existed
  merged_bytes: &[u8]        // the new bytes being merged in
) -> Option<Vec<u8>> {       // set the new value, return None to delete
  let mut ret = old_value
    .map(|ov| ov.to_vec())
    .unwrap_or_else(|| vec![]);

  ret.extend_from_slice(merged_bytes);

  Some(ret)
}

db.set_merge_operator(concatenate_merge);

let k = b"k1";

db.insert(k, vec![0]);
db.merge(k, vec![1]);
db.merge(k, vec![2]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![0, 1, 2]))));

// Replace previously merged data. The merge function will not be called.
db.insert(k, vec![3]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![3]))));

// Merges on non-present values will cause the merge function to be called
// with `old_value == None`. If the merge function returns something (which it
// does, in this case) a new value will be inserted.
db.remove(k);
db.merge(k, vec![4]);
assert_eq!(db.get(k), Ok(Some(IVec::from(vec![4]))));
source

pub fn iter(&self) -> Iter

Create a double-ended iterator over the tuples of keys and values in this tree.

Examples
use sled::IVec;
db.insert(&[1], vec![10]);
db.insert(&[2], vec![20]);
db.insert(&[3], vec![30]);
let mut iter = db.iter();
assert_eq!(
    iter.next().unwrap(),
    Ok((IVec::from(&[1]), IVec::from(&[10])))
);
assert_eq!(
    iter.next().unwrap(),
    Ok((IVec::from(&[2]), IVec::from(&[20])))
);
assert_eq!(
    iter.next().unwrap(),
    Ok((IVec::from(&[3]), IVec::from(&[30])))
);
assert_eq!(iter.next(), None);
source

pub fn range<K, R>(&self, range: R) -> Iter where K: AsRef<[u8]>, R: RangeBounds<K>,

Create a double-ended iterator over tuples of keys and values, where the keys fall within the specified range.

Examples
use sled::IVec;
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;

let start: &[u8] = &[2];
let end: &[u8] = &[4];
let mut r = db.range(start..end);
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[2]), IVec::from(&[20]))));
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[3]), IVec::from(&[30]))));
assert_eq!(r.next(), None);

let mut r = db.range(start..end).rev();
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[3]), IVec::from(&[30]))));
assert_eq!(r.next().unwrap(), Ok((IVec::from(&[2]), IVec::from(&[20]))));
assert_eq!(r.next(), None);
source

pub fn scan_prefix<P>(&self, prefix: P) -> Iter where P: AsRef<[u8]>,

Create an iterator over tuples of keys and values, where the all the keys starts with the given prefix.

Examples
use sled::IVec;
db.insert(&[0, 0, 0], vec![0, 0, 0])?;
db.insert(&[0, 0, 1], vec![0, 0, 1])?;
db.insert(&[0, 0, 2], vec![0, 0, 2])?;
db.insert(&[0, 0, 3], vec![0, 0, 3])?;
db.insert(&[0, 1, 0], vec![0, 1, 0])?;
db.insert(&[0, 1, 1], vec![0, 1, 1])?;

let prefix: &[u8] = &[0, 0];
let mut r = db.scan_prefix(prefix);
assert_eq!(
    r.next(),
    Some(Ok((IVec::from(&[0, 0, 0]), IVec::from(&[0, 0, 0]))))
);
assert_eq!(
    r.next(),
    Some(Ok((IVec::from(&[0, 0, 1]), IVec::from(&[0, 0, 1]))))
);
assert_eq!(
    r.next(),
    Some(Ok((IVec::from(&[0, 0, 2]), IVec::from(&[0, 0, 2]))))
);
assert_eq!(
    r.next(),
    Some(Ok((IVec::from(&[0, 0, 3]), IVec::from(&[0, 0, 3]))))
);
assert_eq!(r.next(), None);
source

pub fn first(&self) -> Result<Option<(IVec, IVec)>>

Returns the first key and value in the Tree, or None if the Tree is empty.

source

pub fn last(&self) -> Result<Option<(IVec, IVec)>>

Returns the last key and value in the Tree, or None if the Tree is empty.

source

pub fn pop_max(&self) -> Result<Option<(IVec, IVec)>>

Atomically removes the maximum item in the Tree instance.

Examples
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;

assert_eq!(&db.pop_max()?.unwrap().0, &[5]);
assert_eq!(&db.pop_max()?.unwrap().0, &[4]);
assert_eq!(&db.pop_max()?.unwrap().0, &[3]);
assert_eq!(&db.pop_max()?.unwrap().0, &[2]);
assert_eq!(&db.pop_max()?.unwrap().0, &[1]);
assert_eq!(&db.pop_max()?.unwrap().0, &[0]);
assert_eq!(db.pop_max()?, None);
source

pub fn pop_min(&self) -> Result<Option<(IVec, IVec)>>

Atomically removes the minimum item in the Tree instance.

Examples
db.insert(&[0], vec![0])?;
db.insert(&[1], vec![10])?;
db.insert(&[2], vec![20])?;
db.insert(&[3], vec![30])?;
db.insert(&[4], vec![40])?;
db.insert(&[5], vec![50])?;

assert_eq!(&db.pop_min()?.unwrap().0, &[0]);
assert_eq!(&db.pop_min()?.unwrap().0, &[1]);
assert_eq!(&db.pop_min()?.unwrap().0, &[2]);
assert_eq!(&db.pop_min()?.unwrap().0, &[3]);
assert_eq!(&db.pop_min()?.unwrap().0, &[4]);
assert_eq!(&db.pop_min()?.unwrap().0, &[5]);
assert_eq!(db.pop_min()?, None);
source

pub fn len(&self) -> usize

Returns the number of elements in this tree.

Beware: performs a full O(n) scan under the hood.

Examples
db.insert(b"a", vec![0]);
db.insert(b"b", vec![1]);
assert_eq!(db.len(), 2);
source

pub fn is_empty(&self) -> bool

Returns true if the Tree contains no elements.

source

pub fn clear(&self) -> Result<()>

Clears the Tree, removing all values.

Note that this is not atomic.

source

pub fn name(&self) -> IVec

Returns the name of the tree.

source

pub fn checksum(&self) -> Result<u32>

Returns the CRC32 of all keys and values in this Tree.

This is O(N) and locks the underlying tree for the duration of the entire scan.

Trait Implementations§

source§

impl Clone for Tree

source§

fn clone(&self) -> Tree

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Tree

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Deref for Tree

§

type Target = TreeInner

The resulting type after dereferencing.
source§

fn deref(&self) -> &TreeInner

Dereferences the value.
source§

impl IntoIterator for &Tree

§

type Item = Result<(IVec, IVec), Error>

The type of the elements being iterated over.
§

type IntoIter = Iter

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Iter

Creates an iterator from a value. Read more
source§

impl<E> Transactional<E> for &Tree

§

type View = TransactionalTree

An internal reference to an internal proxy type that mediates transactional reads and writes.
source§

fn make_overlay(&self) -> Result<TransactionalTrees>

An internal function for creating a top-level transactional structure.
source§

fn view_overlay(overlay: &TransactionalTrees) -> Self::View

An internal function for viewing the transactional subcomponents based on the top-level transactional structure.
source§

fn transaction<F, A>(&self, f: F) -> TransactionResult<A, E>where F: Fn(&Self::View) -> ConflictableTransactionResult<A, E>,

Runs a transaction, possibly retrying the passed-in closure if a concurrent conflict is detected that would cause a violation of serializability. This is the only trait method that you’re most likely to use directly.
source§

impl<E> Transactional<E> for Tree

§

type View = TransactionalTree

An internal reference to an internal proxy type that mediates transactional reads and writes.
source§

fn make_overlay(&self) -> Result<TransactionalTrees>

An internal function for creating a top-level transactional structure.
source§

fn view_overlay(overlay: &TransactionalTrees) -> Self::View

An internal function for viewing the transactional subcomponents based on the top-level transactional structure.
source§

fn transaction<F, A>(&self, f: F) -> TransactionResult<A, E>where F: Fn(&Self::View) -> ConflictableTransactionResult<A, E>,

Runs a transaction, possibly retrying the passed-in closure if a concurrent conflict is detected that would cause a violation of serializability. This is the only trait method that you’re most likely to use directly.
source§

impl Send for Tree

source§

impl Sync for Tree

Auto Trait Implementations§

§

impl !RefUnwindSafe for Tree

§

impl Unpin for Tree

§

impl !UnwindSafe for Tree

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.