1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// SPDX-License-Identifier: MIT
//! Degree-2 [BCH] code checksum.
//!
//! [BCH]: <https://en.wikipedia.org/wiki/BCH_code>
use core::{mem, ops};
use crate::primitives::gf32::Fe32;
use crate::primitives::hrp::Hrp;
/// Trait defining a particular checksum.
///
/// For users, this can be treated as a marker trait; none of the associated data
/// are end-user relevant.
pub trait Checksum {
/// An unsigned integer type capable of holding a packed version of the generator
/// polynomial (without its leading 1) and target residue (which will have the
/// same width).
///
/// Generally, this is the number of characters in the checksum times 5. So e.g.
/// for bech32, which has a 6-character checksum, we need 30 bits, so we can use
/// u32 here.
///
/// The smallest type possible should be used, for efficiency reasons, but the
/// only operations we do on these types are bitwise xor and shifts, so it should
/// be pretty efficient no matter what.
type MidstateRepr: PackedFe32;
/// The length of the code.
///
/// The length of the code is how long a coded message can be (including the
/// checksum!) for the code to retain its error-correcting properties.
const CODE_LENGTH: usize;
/// The number of characters in the checksum.
///
/// Alternately, the degree of the generator polynomial. This is **not** the same
/// as `Self::CODE_LENGTH`.
const CHECKSUM_LENGTH: usize;
/// The coefficients of the generator polynomial, except the leading monic term,
/// in "big-endian" (highest-degree coefficients get leftmost bits) order, along
/// with the 4 shifts of the generator.
///
/// The shifts are literally the generator polynomial left-shifted (i.e. multiplied
/// by the appropriate power of 2) in the field. That is, the 5 entries in this
/// array are the generator times { P, Z, Y, G, S } in that order.
///
/// These cannot be usefully pre-computed because of Rust's limited constfn support
/// as of 1.67, so they must be specified manually for each checksum. To check the
/// values for consistency, run `Self::sanity_check()`.
const GENERATOR_SH: [Self::MidstateRepr; 5];
/// The residue, modulo the generator polynomial, that a valid codeword will have.
const TARGET_RESIDUE: Self::MidstateRepr;
/// Sanity checks that the various constants of the trait are set in a way that they
/// are consistent with each other.
///
/// This function never needs to be called by users, but anyone defining a checksum
/// should add a unit test to their codebase which calls this.
fn sanity_check() {
// Check that the declared midstate type can actually hold the whole checksum.
assert!(Self::CHECKSUM_LENGTH <= Self::MidstateRepr::WIDTH);
// Check that the provided generator polynomials are, indeed, the same polynomial just shifted.
for i in 1..5 {
for j in 0..Self::MidstateRepr::WIDTH {
let last = Self::GENERATOR_SH[i - 1].unpack(j);
let curr = Self::GENERATOR_SH[i].unpack(j);
// GF32 is defined by extending GF2 with a root of x^5 + x^3 + 1 = 0
// which when written as bit coefficients is 41 = 0. Hence xoring
// (adding, in GF32) by 41 is the way to reduce x^5.
assert_eq!(
curr,
(last << 1) ^ if last & 0x10 == 0x10 { 41 } else { 0 },
"Element {} of generator << 2^{} was incorrectly computed. (Should have been {} << 1)",
j, i, last,
);
}
}
}
}
/// A checksum engine, which can be used to compute or verify a checksum.
///
/// Use this to verify a checksum, feed it the data to be checksummed using
/// the `Self::input_*` methods.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Engine<Ck: Checksum> {
residue: Ck::MidstateRepr,
}
impl<Ck: Checksum> Default for Engine<Ck> {
fn default() -> Self { Self::new() }
}
impl<Ck: Checksum> Engine<Ck> {
/// Constructs a new checksum engine with no data input.
#[inline]
pub fn new() -> Self { Engine { residue: Ck::MidstateRepr::ONE } }
/// Feeds `hrp` into the checksum engine.
#[inline]
pub fn input_hrp(&mut self, hrp: Hrp) {
for fe in HrpFe32Iter::new(&hrp) {
self.input_fe(fe)
}
}
/// Adds a single gf32 element to the checksum engine.
///
/// This is where the actual checksum computation magic happens.
#[inline]
pub fn input_fe(&mut self, e: Fe32) {
let xn = self.residue.mul_by_x_then_add(Ck::CHECKSUM_LENGTH, e.into());
for i in 0..5 {
if xn & (1 << i) != 0 {
self.residue = self.residue ^ Ck::GENERATOR_SH[i];
}
}
}
/// Inputs the target residue of the checksum.
///
/// Checksums are generated by appending the target residue to the input
/// string, then computing the actual residue, and then replacing the
/// target with the actual. This method lets us compute the actual residue
/// without doing any string concatenations.
#[inline]
pub fn input_target_residue(&mut self) {
for i in 0..Ck::CHECKSUM_LENGTH {
self.input_fe(Fe32(Ck::TARGET_RESIDUE.unpack(Ck::CHECKSUM_LENGTH - i - 1)));
}
}
/// Returns for the current checksum residue.
#[inline]
pub fn residue(&self) -> &Ck::MidstateRepr { &self.residue }
}
/// Trait describing an integer type which can be used as a "packed" sequence of Fe32s.
///
/// This is implemented for u32, u64 and u128, as a way to treat these primitive types as
/// packed coefficients of polynomials over GF32 (up to some maximal degree, of course).
///
/// This is useful because then multiplication by x reduces to simply left-shifting by 5,
/// and addition of entire polynomials can be done by xor.
pub trait PackedFe32: Copy + PartialEq + Eq + ops::BitXor<Self, Output = Self> {
/// The one constant, for which stdlib provides no existing trait.
const ONE: Self;
/// The number of fe32s that can fit into the type; computed as floor(bitwidth / 5).
const WIDTH: usize = mem::size_of::<Self>() * 8 / 5;
/// Extracts the coefficient of the x^n from the packed polynomial.
fn unpack(&self, n: usize) -> u8;
/// Multiply the polynomial by x, drop its highest coefficient (and return it), and
/// add a new field element to the now-0 constant coefficient.
///
/// Takes the degree of the polynomial as an input; for checksum applications
/// this should basically always be `Checksum::CHECKSUM_WIDTH`.
fn mul_by_x_then_add(&mut self, degree: usize, add: u8) -> u8;
}
/// A placeholder type used as part of the [`NoChecksum`] "checksum".
///
/// [`NoChecksum`]: crate::primitives::NoChecksum
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct PackedNull;
impl ops::BitXor<PackedNull> for PackedNull {
type Output = PackedNull;
#[inline]
fn bitxor(self, _: PackedNull) -> PackedNull { PackedNull }
}
impl PackedFe32 for PackedNull {
const ONE: Self = PackedNull;
#[inline]
fn unpack(&self, _: usize) -> u8 { 0 }
#[inline]
fn mul_by_x_then_add(&mut self, _: usize, _: u8) -> u8 { 0 }
}
macro_rules! impl_packed_fe32 {
($ty:ident) => {
impl PackedFe32 for $ty {
const ONE: Self = 1;
#[inline]
fn unpack(&self, n: usize) -> u8 {
debug_assert!(n < Self::WIDTH);
(*self >> (n * 5)) as u8 & 0x1f
}
#[inline]
fn mul_by_x_then_add(&mut self, degree: usize, add: u8) -> u8 {
debug_assert!(degree > 0);
debug_assert!(degree <= Self::WIDTH);
debug_assert!(add < 32);
let ret = self.unpack(degree - 1);
*self &= !(0x1f << ((degree - 1) * 5));
*self <<= 5;
*self |= Self::from(add);
ret
}
}
};
}
impl_packed_fe32!(u32);
impl_packed_fe32!(u64);
impl_packed_fe32!(u128);
/// Iterator that yields the field elements that are input into a checksum algorithm for an [`Hrp`].
pub struct HrpFe32Iter<'hrp> {
/// `None` once the hrp high fes have been yielded.
high_iter: Option<crate::primitives::hrp::LowercaseByteIter<'hrp>>,
/// `None` once the hrp low fes have been yielded.
low_iter: Option<crate::primitives::hrp::LowercaseByteIter<'hrp>>,
}
impl<'hrp> HrpFe32Iter<'hrp> {
/// Creates an iterator that yields the field elements of `hrp` as they are input into the
/// checksum algorithm.
#[inline]
pub fn new(hrp: &'hrp Hrp) -> Self {
let high_iter = hrp.lowercase_byte_iter();
let low_iter = hrp.lowercase_byte_iter();
Self { high_iter: Some(high_iter), low_iter: Some(low_iter) }
}
}
impl<'hrp> Iterator for HrpFe32Iter<'hrp> {
type Item = Fe32;
#[inline]
fn next(&mut self) -> Option<Fe32> {
if let Some(ref mut high_iter) = &mut self.high_iter {
match high_iter.next() {
Some(high) => return Some(Fe32(high >> 5)),
None => {
self.high_iter = None;
return Some(Fe32::Q);
}
}
}
if let Some(ref mut low_iter) = &mut self.low_iter {
match low_iter.next() {
Some(low) => return Some(Fe32(low & 0x1f)),
None => self.low_iter = None,
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let high = match &self.high_iter {
Some(high_iter) => {
let (min, max) = high_iter.size_hint();
(min + 1, max.map(|max| max + 1)) // +1 for the extra Q
}
None => (0, Some(0)),
};
let low = match &self.low_iter {
Some(low_iter) => low_iter.size_hint(),
None => (0, Some(0)),
};
let min = high.0 + 1 + low.0;
let max = high.1.zip(low.1).map(|(high, low)| high + 1 + low);
(min, max)
}
}