1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
// SPDX-License-Identifier: CC0-1.0
//! Concrete Policies
//!
use core::{fmt, str};
#[cfg(feature = "std")]
use std::error;
use bitcoin::absolute;
#[cfg(feature = "compiler")]
use {
crate::descriptor::TapTree,
crate::miniscript::ScriptContext,
crate::policy::compiler::CompilerError,
crate::policy::compiler::OrdF64,
crate::policy::{compiler, Concrete, Liftable, Semantic},
crate::Descriptor,
crate::Miniscript,
crate::Tap,
core::cmp::Reverse,
};
use super::ENTAILMENT_MAX_TERMINALS;
use crate::expression::{self, FromTree};
use crate::iter::{Tree, TreeLike};
use crate::miniscript::types::extra_props::TimelockInfo;
use crate::prelude::*;
use crate::sync::Arc;
#[cfg(all(doc, not(feature = "compiler")))]
use crate::Descriptor;
use crate::{
errstr, AbsLockTime, Error, ForEachKey, FromStrKey, MiniscriptKey, RelLockTime, Threshold,
Translator,
};
/// Maximum TapLeafs allowed in a compiled TapTree
#[cfg(feature = "compiler")]
const MAX_COMPILATION_LEAVES: usize = 1024;
/// Concrete policy which corresponds directly to a miniscript structure,
/// and whose disjunctions are annotated with satisfaction probabilities
/// to assist the compiler.
// Currently the vectors in And/Or are limited to two elements, this is a general miniscript thing
// not specific to rust-miniscript. Eventually we would like to extend these to be n-ary, but first
// we need to decide on a game plan for how to efficiently compile n-ary disjunctions
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Policy<Pk: MiniscriptKey> {
/// Unsatisfiable.
Unsatisfiable,
/// Trivially satisfiable.
Trivial,
/// A public key which must sign to satisfy the descriptor.
Key(Pk),
/// An absolute locktime restriction.
After(AbsLockTime),
/// A relative locktime restriction.
Older(RelLockTime),
/// A SHA256 whose preimage must be provided to satisfy the descriptor.
Sha256(Pk::Sha256),
/// A SHA256d whose preimage must be provided to satisfy the descriptor.
Hash256(Pk::Hash256),
/// A RIPEMD160 whose preimage must be provided to satisfy the descriptor.
Ripemd160(Pk::Ripemd160),
/// A HASH160 whose preimage must be provided to satisfy the descriptor.
Hash160(Pk::Hash160),
/// A list of sub-policies, all of which must be satisfied.
And(Vec<Arc<Policy<Pk>>>),
/// A list of sub-policies, one of which must be satisfied, along with
/// relative probabilities for each one.
Or(Vec<(usize, Arc<Policy<Pk>>)>),
/// A set of descriptors, satisfactions must be provided for `k` of them.
Thresh(Threshold<Arc<Policy<Pk>>, 0>),
}
/// Detailed error type for concrete policies.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum PolicyError {
/// `And` fragments only support two args.
NonBinaryArgAnd,
/// `Or` fragments only support two args.
NonBinaryArgOr,
/// Semantic Policy Error: `And` `Or` fragments must take args: `k > 1`.
InsufficientArgsforAnd,
/// Semantic policy error: `And` `Or` fragments must take args: `k > 1`.
InsufficientArgsforOr,
/// Entailment max terminals exceeded.
EntailmentMaxTerminals,
/// Cannot lift policies that have a combination of height and timelocks.
HeightTimelockCombination,
/// Duplicate Public Keys.
DuplicatePubKeys,
}
/// Descriptor context for [`Policy`] compilation into a [`Descriptor`].
pub enum DescriptorCtx<Pk> {
/// See docs for [`Descriptor::Bare`].
Bare,
/// See docs for [`Descriptor::Sh`].
Sh,
/// See docs for [`Descriptor::Wsh`].
Wsh,
/// See docs for [`Descriptor::Wsh`].
ShWsh,
/// [`Descriptor::Tr`] where the `Option<Pk>` corresponds to the internal key if no
/// internal key can be inferred from the given policy.
Tr(Option<Pk>),
}
impl fmt::Display for PolicyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
PolicyError::NonBinaryArgAnd => {
f.write_str("And policy fragment must take 2 arguments")
}
PolicyError::NonBinaryArgOr => f.write_str("Or policy fragment must take 2 arguments"),
PolicyError::InsufficientArgsforAnd => {
f.write_str("Semantic Policy 'And' fragment must have at least 2 args ")
}
PolicyError::InsufficientArgsforOr => {
f.write_str("Semantic Policy 'Or' fragment must have at least 2 args ")
}
PolicyError::EntailmentMaxTerminals => {
write!(f, "Policy entailment only supports {} terminals", ENTAILMENT_MAX_TERMINALS)
}
PolicyError::HeightTimelockCombination => {
f.write_str("Cannot lift policies that have a heightlock and timelock combination")
}
PolicyError::DuplicatePubKeys => f.write_str("Policy contains duplicate keys"),
}
}
}
#[cfg(feature = "std")]
impl error::Error for PolicyError {
fn cause(&self) -> Option<&dyn error::Error> {
use self::PolicyError::*;
match self {
NonBinaryArgAnd
| NonBinaryArgOr
| InsufficientArgsforAnd
| InsufficientArgsforOr
| EntailmentMaxTerminals
| HeightTimelockCombination
| DuplicatePubKeys => None,
}
}
}
impl<Pk: MiniscriptKey> Policy<Pk> {
/// Flattens the [`Policy`] tree structure into a vector of tuples `(leaf script, leaf probability)`
/// with leaf probabilities corresponding to odds for each sub-branch in the policy.
/// We calculate the probability of selecting the sub-branch at every level and calculate the
/// leaf probabilities as the probability of traversing through required branches to reach the
/// leaf node, i.e. multiplication of the respective probabilities.
///
/// For example, the policy tree: OR
/// / \
/// 2 1 odds
/// / \
/// A OR
/// / \
/// 3 1 odds
/// / \
/// B C
///
/// gives the vector [(2/3, A), (1/3 * 3/4, B), (1/3 * 1/4, C)].
///
/// ## Constraints
///
/// Since this splitting might lead to exponential blow-up, we constrain the number of
/// leaf-nodes to [`MAX_COMPILATION_LEAVES`].
#[cfg(feature = "compiler")]
fn to_tapleaf_prob_vec(&self, prob: f64) -> Vec<(f64, Policy<Pk>)> {
match self {
Policy::Or(ref subs) => {
let total_odds: usize = subs.iter().map(|(ref k, _)| k).sum();
subs.iter()
.flat_map(|(k, ref policy)| {
policy.to_tapleaf_prob_vec(prob * *k as f64 / total_odds as f64)
})
.collect::<Vec<_>>()
}
Policy::Thresh(ref thresh) if thresh.is_or() => {
let total_odds = thresh.n();
thresh
.iter()
.flat_map(|policy| policy.to_tapleaf_prob_vec(prob / total_odds as f64))
.collect::<Vec<_>>()
}
x => vec![(prob, x.clone())],
}
}
/// Extracts the internal_key from this policy tree.
#[cfg(feature = "compiler")]
fn extract_key(self, unspendable_key: Option<Pk>) -> Result<(Pk, Policy<Pk>), Error> {
let mut internal_key: Option<Pk> = None;
{
let mut prob = 0.;
let semantic_policy = self.lift()?;
let concrete_keys = self.keys();
let key_prob_map: BTreeMap<_, _> = self
.to_tapleaf_prob_vec(1.0)
.into_iter()
.filter(|(_, ref pol)| matches!(pol, Concrete::Key(..)))
.map(|(prob, key)| (key, prob))
.collect();
for key in concrete_keys.into_iter() {
if semantic_policy
.clone()
.satisfy_constraint(&Semantic::Key(key.clone()), true)
== Semantic::Trivial
{
match key_prob_map.get(&Concrete::Key(key.clone())) {
Some(val) => {
if *val > prob {
prob = *val;
internal_key = Some(key.clone());
}
}
None => return Err(errstr("Key should have existed in the BTreeMap!")),
}
}
}
}
match (internal_key, unspendable_key) {
(Some(ref key), _) => Ok((key.clone(), self.translate_unsatisfiable_pk(key))),
(_, Some(key)) => Ok((key, self)),
_ => Err(errstr("No viable internal key found.")),
}
}
/// Compiles the [`Policy`] into a [`Descriptor::Tr`].
///
/// ### TapTree compilation
///
/// The policy tree constructed by root-level disjunctions over [`Policy::Or`] and
/// [`Policy::Thresh`](1, ..) which is flattened into a vector (with respective
/// probabilities derived from odds) of policies.
///
/// For example, the policy `thresh(1,or(pk(A),pk(B)),and(or(pk(C),pk(D)),pk(E)))` gives the
/// vector `[pk(A),pk(B),and(or(pk(C),pk(D)),pk(E)))]`. Each policy in the vector is compiled
/// into the respective miniscripts. A Huffman Tree is created from this vector which optimizes
/// over the probabilitity of satisfaction for the respective branch in the TapTree.
///
/// Refer to [this link](https://gist.github.com/SarcasticNastik/9e70b2b43375aab3e78c51e09c288c89)
/// or [doc/Tr compiler.pdf] in the root of the repository to understand why such compilation
/// is also *cost-efficient*.
// TODO: We might require other compile errors for Taproot.
#[cfg(feature = "compiler")]
pub fn compile_tr(&self, unspendable_key: Option<Pk>) -> Result<Descriptor<Pk>, Error> {
self.is_valid()?; // Check for validity
match self.is_safe_nonmalleable() {
(false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
(_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
_ => {
let (internal_key, policy) = self.clone().extract_key(unspendable_key)?;
policy.check_num_tapleaves()?;
let tree = Descriptor::new_tr(
internal_key,
match policy {
Policy::Trivial => None,
policy => {
let vec_policies: Vec<_> = policy.to_tapleaf_prob_vec(1.0);
let mut leaf_compilations: Vec<(OrdF64, Miniscript<Pk, Tap>)> = vec![];
for (prob, pol) in vec_policies {
// policy corresponding to the key (replaced by unsatisfiable) is skipped
if pol == Policy::Unsatisfiable {
continue;
}
let compilation = compiler::best_compilation::<Pk, Tap>(&pol)?;
compilation.sanity_check()?;
leaf_compilations.push((OrdF64(prob), compilation));
}
let tap_tree = with_huffman_tree::<Pk>(leaf_compilations)?;
Some(tap_tree)
}
},
)?;
Ok(tree)
}
}
}
/// Compiles the [`Policy`] into a [`Descriptor::Tr`].
///
/// ### TapTree compilation
///
/// The policy tree constructed by root-level disjunctions over [`Policy::Or`] and
/// [`Policy::Thresh`](k, ..n..) which is flattened into a vector (with respective
/// probabilities derived from odds) of policies. For example, the policy
/// `thresh(1,or(pk(A),pk(B)),and(or(pk(C),pk(D)),pk(E)))` gives the vector
/// `[pk(A),pk(B),and(or(pk(C),pk(D)),pk(E)))]`.
///
/// ### Policy enumeration
///
/// Generates a root-level disjunctive tree over the given policy tree.
///
/// Uses a fixed-point algorithm to enumerate the disjunctions until exhaustive root-level
/// enumeration or limits exceed. For a given [`Policy`], we maintain an [ordered
/// set](`BTreeSet`) of `(prob, policy)` (ordered by probability) to maintain the list of
/// enumerated sub-policies whose disjunction is isomorphic to initial policy (*invariant*).
#[cfg(feature = "compiler")]
pub fn compile_tr_private_experimental(
&self,
unspendable_key: Option<Pk>,
) -> Result<Descriptor<Pk>, Error> {
self.is_valid()?; // Check for validity
match self.is_safe_nonmalleable() {
(false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
(_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
_ => {
let (internal_key, policy) = self.clone().extract_key(unspendable_key)?;
let tree = Descriptor::new_tr(
internal_key,
match policy {
Policy::Trivial => None,
policy => {
let leaf_compilations: Vec<_> = policy
.enumerate_policy_tree(1.0)
.into_iter()
.filter(|x| x.1 != Arc::new(Policy::Unsatisfiable))
.map(|(prob, pol)| {
(
OrdF64(prob),
compiler::best_compilation(pol.as_ref()).unwrap(),
)
})
.collect();
let tap_tree = with_huffman_tree::<Pk>(leaf_compilations).unwrap();
Some(tap_tree)
}
},
)?;
Ok(tree)
}
}
}
/// Compiles the [`Policy`] into `desc_ctx` [`Descriptor`]
///
/// In case of [`DescriptorCtx::Tr`], `internal_key` is used for the taproot compilation when
/// no public key can be inferred from the given policy.
///
/// # NOTE:
///
/// It is **not recommended** to use policy as a stable identifier for a miniscript. You should
/// use the policy compiler once, and then use the miniscript output as a stable identifier. See
/// the compiler document in [`doc/compiler.md`] for more details.
#[cfg(feature = "compiler")]
pub fn compile_to_descriptor<Ctx: ScriptContext>(
&self,
desc_ctx: DescriptorCtx<Pk>,
) -> Result<Descriptor<Pk>, Error> {
self.is_valid()?;
match self.is_safe_nonmalleable() {
(false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
(_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
_ => match desc_ctx {
DescriptorCtx::Bare => Descriptor::new_bare(compiler::best_compilation(self)?),
DescriptorCtx::Sh => Descriptor::new_sh(compiler::best_compilation(self)?),
DescriptorCtx::Wsh => Descriptor::new_wsh(compiler::best_compilation(self)?),
DescriptorCtx::ShWsh => Descriptor::new_sh_wsh(compiler::best_compilation(self)?),
DescriptorCtx::Tr(unspendable_key) => self.compile_tr(unspendable_key),
},
}
}
/// Compiles the descriptor into an optimized `Miniscript` representation.
///
/// # NOTE:
///
/// It is **not recommended** to use policy as a stable identifier for a miniscript. You should
/// use the policy compiler once, and then use the miniscript output as a stable identifier. See
/// the compiler document in doc/compiler.md for more details.
#[cfg(feature = "compiler")]
pub fn compile<Ctx: ScriptContext>(&self) -> Result<Miniscript<Pk, Ctx>, CompilerError> {
self.is_valid()?;
match self.is_safe_nonmalleable() {
(false, _) => Err(CompilerError::TopLevelNonSafe),
(_, false) => Err(CompilerError::ImpossibleNonMalleableCompilation),
_ => compiler::best_compilation(self),
}
}
}
#[cfg(feature = "compiler")]
impl<Pk: MiniscriptKey> Policy<Pk> {
/// Returns a vector of policies whose disjunction is isomorphic to the initial one.
///
/// This function is supposed to incrementally expand i.e. represent the policy as
/// disjunction over sub-policies output by it. The probability calculations are similar
/// to [`Policy::to_tapleaf_prob_vec`].
#[cfg(feature = "compiler")]
fn enumerate_pol(&self, prob: f64) -> Vec<(f64, Arc<Self>)> {
match self {
Policy::Or(subs) => {
let total_odds = subs.iter().fold(0, |acc, x| acc + x.0);
subs.iter()
.map(|(odds, pol)| (prob * *odds as f64 / total_odds as f64, pol.clone()))
.collect::<Vec<_>>()
}
Policy::Thresh(ref thresh) if thresh.is_or() => {
let total_odds = thresh.n();
thresh
.iter()
.map(|pol| (prob / total_odds as f64, pol.clone()))
.collect::<Vec<_>>()
}
Policy::Thresh(ref thresh) if !thresh.is_and() => generate_combination(thresh, prob),
pol => vec![(prob, Arc::new(pol.clone()))],
}
}
/// Generates a root-level disjunctive tree over the given policy tree.
///
/// Uses a fixed-point algorithm to enumerate the disjunctions until exhaustive root-level
/// enumeration or limits exceed. For a given [`Policy`], we maintain an [ordered
/// set](`BTreeSet`) of `(prob, policy)` (ordered by probability) to maintain the list of
/// enumerated sub-policies whose disjunction is isomorphic to initial policy (*invariant*).
#[cfg(feature = "compiler")]
fn enumerate_policy_tree(self, prob: f64) -> Vec<(f64, Arc<Self>)> {
let mut tapleaf_prob_vec = BTreeSet::<(Reverse<OrdF64>, Arc<Self>)>::new();
// Store probability corresponding to policy in the enumerated tree. This is required since
// owing to the current [policy element enumeration algorithm][`Policy::enumerate_pol`],
// two passes of the algorithm might result in same sub-policy showing up. Currently, we
// merge the nodes by adding up the corresponding probabilities for the same policy.
let mut pol_prob_map = BTreeMap::<Arc<Self>, OrdF64>::new();
let arc_self = Arc::new(self);
tapleaf_prob_vec.insert((Reverse(OrdF64(prob)), Arc::clone(&arc_self)));
pol_prob_map.insert(Arc::clone(&arc_self), OrdF64(prob));
// Since we know that policy enumeration *must* result in increase in total number of nodes,
// we can maintain the length of the ordered set to check if the
// [enumeration pass][`Policy::enumerate_pol`] results in further policy split or not.
let mut prev_len = 0usize;
// This is required since we merge some corresponding policy nodes, so we can explicitly
// store the variables
let mut enum_len = tapleaf_prob_vec.len();
let mut ret: Vec<(f64, Arc<Self>)> = vec![];
// Stopping condition: When NONE of the inputs can be further enumerated.
'outer: loop {
//--- FIND a plausible node ---
let mut prob: Reverse<OrdF64> = Reverse(OrdF64(0.0));
let mut curr_policy: Arc<Self> = Arc::new(Policy::Unsatisfiable);
let mut curr_pol_replace_vec: Vec<(f64, Arc<Self>)> = vec![];
let mut no_more_enum = false;
// The nodes which can't be enumerated further are directly appended to ret and removed
// from the ordered set.
let mut to_del: Vec<(f64, Arc<Self>)> = vec![];
'inner: for (i, (p, pol)) in tapleaf_prob_vec.iter().enumerate() {
curr_pol_replace_vec = pol.enumerate_pol(p.0 .0);
enum_len += curr_pol_replace_vec.len() - 1; // A disjunctive node should have seperated this into more nodes
assert!(prev_len <= enum_len);
if prev_len < enum_len {
// Plausible node found
prob = *p;
curr_policy = Arc::clone(pol);
break 'inner;
} else if i == tapleaf_prob_vec.len() - 1 {
// No enumerable node found i.e. STOP
// Move all the elements to final return set
no_more_enum = true;
} else {
// Either node is enumerable, or we have
// Mark all non-enumerable nodes to remove,
// if not returning value in the current iteration.
to_del.push((p.0 .0, Arc::clone(pol)));
}
}
// --- Sanity Checks ---
if enum_len > MAX_COMPILATION_LEAVES || no_more_enum {
for (p, pol) in tapleaf_prob_vec.into_iter() {
ret.push((p.0 .0, pol));
}
break 'outer;
}
// If total number of nodes are in limits, we remove the current node and replace it
// with children nodes
// Remove current node
assert!(tapleaf_prob_vec.remove(&(prob, curr_policy.clone())));
// OPTIMIZATION - Move marked nodes into final vector
for (p, pol) in to_del {
assert!(tapleaf_prob_vec.remove(&(Reverse(OrdF64(p)), pol.clone())));
ret.push((p, pol.clone()));
}
// Append node if not previously exists, else update the respective probability
for (p, policy) in curr_pol_replace_vec {
match pol_prob_map.get(&policy) {
Some(prev_prob) => {
assert!(tapleaf_prob_vec.remove(&(Reverse(*prev_prob), policy.clone())));
tapleaf_prob_vec.insert((Reverse(OrdF64(prev_prob.0 + p)), policy.clone()));
pol_prob_map.insert(policy.clone(), OrdF64(prev_prob.0 + p));
}
None => {
tapleaf_prob_vec.insert((Reverse(OrdF64(p)), policy.clone()));
pol_prob_map.insert(policy.clone(), OrdF64(p));
}
}
}
// --- Update --- total sub-policies count (considering no merging of nodes)
prev_len = enum_len;
}
ret
}
}
impl<Pk: MiniscriptKey> ForEachKey<Pk> for Policy<Pk> {
fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, mut pred: F) -> bool {
self.pre_order_iter().all(|policy| match policy {
Policy::Key(ref pk) => pred(pk),
_ => true,
})
}
}
impl<Pk: MiniscriptKey> Policy<Pk> {
/// Converts a policy using one kind of public key to another type of public key.
///
/// For example usage please see [`crate::policy::semantic::Policy::translate_pk`].
pub fn translate_pk<Q, E, T>(&self, t: &mut T) -> Result<Policy<Q>, E>
where
T: Translator<Pk, Q, E>,
Q: MiniscriptKey,
{
use Policy::*;
let mut translated = vec![];
for data in self.post_order_iter() {
let child_n = |n| Arc::clone(&translated[data.child_indices[n]]);
let new_policy = match data.node {
Unsatisfiable => Unsatisfiable,
Trivial => Trivial,
Key(ref pk) => t.pk(pk).map(Key)?,
Sha256(ref h) => t.sha256(h).map(Sha256)?,
Hash256(ref h) => t.hash256(h).map(Hash256)?,
Ripemd160(ref h) => t.ripemd160(h).map(Ripemd160)?,
Hash160(ref h) => t.hash160(h).map(Hash160)?,
Older(ref n) => Older(*n),
After(ref n) => After(*n),
And(ref subs) => And((0..subs.len()).map(child_n).collect()),
Or(ref subs) => Or(subs
.iter()
.enumerate()
.map(|(i, (prob, _))| (*prob, child_n(i)))
.collect()),
Thresh(ref thresh) => {
Thresh(thresh.map_from_post_order_iter(&data.child_indices, &translated))
}
};
translated.push(Arc::new(new_policy));
}
// Unwrap is ok because we know we processed at least one node.
let root_node = translated.pop().unwrap();
// Unwrap is ok because we know `root_node` is the only strong reference.
Ok(Arc::try_unwrap(root_node).unwrap())
}
/// Translates `Concrete::Key(key)` to `Concrete::Unsatisfiable` when extracting `TapKey`.
pub fn translate_unsatisfiable_pk(self, key: &Pk) -> Policy<Pk> {
use Policy::*;
let mut translated = vec![];
for data in Arc::new(self).post_order_iter() {
let child_n = |n| Arc::clone(&translated[data.child_indices[n]]);
let new_policy = match data.node.as_ref() {
Policy::Key(ref k) if k.clone() == *key => Some(Policy::Unsatisfiable),
And(ref subs) => Some(And((0..subs.len()).map(child_n).collect())),
Or(ref subs) => Some(Or(subs
.iter()
.enumerate()
.map(|(i, (prob, _))| (*prob, child_n(i)))
.collect())),
Thresh(ref thresh) => {
Some(Thresh(thresh.map_from_post_order_iter(&data.child_indices, &translated)))
}
_ => None,
};
match new_policy {
Some(new_policy) => translated.push(Arc::new(new_policy)),
None => translated.push(Arc::clone(&data.node)),
}
}
// Ok to unwrap because we know we processed at least one node.
let root_node = translated.pop().unwrap();
// Ok to unwrap because we know `root_node` is the only strong reference.
Arc::try_unwrap(root_node).unwrap()
}
/// Gets all keys in the policy.
pub fn keys(&self) -> Vec<&Pk> {
self.pre_order_iter()
.filter_map(|policy| match policy {
Policy::Key(ref pk) => Some(pk),
_ => None,
})
.collect()
}
/// Gets the number of [TapLeaf](`TapTree::Leaf`)s considering exhaustive root-level [`Policy::Or`]
/// and [`Policy::Thresh`] disjunctions for the `TapTree`.
#[cfg(feature = "compiler")]
fn num_tap_leaves(&self) -> usize {
use Policy::*;
let mut nums = vec![];
for data in Arc::new(self).post_order_iter() {
let num_for_child_n = |n| nums[data.child_indices[n]];
let num = match data.node {
Or(subs) => (0..subs.len()).map(num_for_child_n).sum(),
Thresh(thresh) if thresh.is_or() => (0..thresh.n()).map(num_for_child_n).sum(),
_ => 1,
};
nums.push(num);
}
// Ok to unwrap because we know we processed at least one node.
nums.pop().unwrap()
}
/// Does checks on the number of `TapLeaf`s.
#[cfg(feature = "compiler")]
fn check_num_tapleaves(&self) -> Result<(), Error> {
if self.num_tap_leaves() > MAX_COMPILATION_LEAVES {
return Err(errstr("Too many Tapleaves"));
}
Ok(())
}
/// Checks whether the policy contains duplicate public keys.
pub fn check_duplicate_keys(&self) -> Result<(), PolicyError> {
let pks = self.keys();
let pks_len = pks.len();
let unique_pks_len = pks.into_iter().collect::<BTreeSet<_>>().len();
if pks_len > unique_pks_len {
Err(PolicyError::DuplicatePubKeys)
} else {
Ok(())
}
}
/// Checks whether the given concrete policy contains a combination of
/// timelocks and heightlocks.
///
/// # Returns
///
/// Returns an error if there is at least one satisfaction that contains
/// a combination of heightlock and timelock.
pub fn check_timelocks(&self) -> Result<(), PolicyError> {
let aggregated_timelock_info = self.timelock_info();
if aggregated_timelock_info.contains_combination {
Err(PolicyError::HeightTimelockCombination)
} else {
Ok(())
}
}
/// Processes `Policy` using `post_order_iter`, creates a `TimelockInfo` for each `Nullary` node
/// and combines them together for `Nary` nodes.
///
/// # Returns
///
/// A single `TimelockInfo` that is the combination of all others after processing each node.
fn timelock_info(&self) -> TimelockInfo {
use Policy::*;
let mut infos = vec![];
for data in Arc::new(self).post_order_iter() {
let info_for_child_n = |n| infos[data.child_indices[n]];
let info = match data.node {
Policy::After(ref t) => TimelockInfo {
csv_with_height: false,
csv_with_time: false,
cltv_with_height: absolute::LockTime::from(*t).is_block_height(),
cltv_with_time: absolute::LockTime::from(*t).is_block_time(),
contains_combination: false,
},
Policy::Older(ref t) => TimelockInfo {
csv_with_height: t.is_height_locked(),
csv_with_time: t.is_time_locked(),
cltv_with_height: false,
cltv_with_time: false,
contains_combination: false,
},
And(ref subs) => {
let iter = (0..subs.len()).map(info_for_child_n);
TimelockInfo::combine_threshold(subs.len(), iter)
}
Or(ref subs) => {
let iter = (0..subs.len()).map(info_for_child_n);
TimelockInfo::combine_threshold(1, iter)
}
Thresh(ref thresh) => {
let iter = (0..thresh.n()).map(info_for_child_n);
TimelockInfo::combine_threshold(thresh.k(), iter)
}
_ => TimelockInfo::default(),
};
infos.push(info);
}
// Ok to unwrap, we had to have visited at least one node.
infos.pop().unwrap()
}
/// This returns whether the given policy is valid or not. It maybe possible that the policy
/// contains Non-two argument `and`, `or` or a `0` arg thresh.
/// Validity condition also checks whether there is a possible satisfaction
/// combination of timelocks and heightlocks
pub fn is_valid(&self) -> Result<(), PolicyError> {
use Policy::*;
self.check_timelocks()?;
self.check_duplicate_keys()?;
for policy in self.pre_order_iter() {
match *policy {
And(ref subs) => {
if subs.len() != 2 {
return Err(PolicyError::NonBinaryArgAnd);
}
}
Or(ref subs) => {
if subs.len() != 2 {
return Err(PolicyError::NonBinaryArgOr);
}
}
_ => {}
}
}
Ok(())
}
/// Checks if any possible compilation of the policy could be compiled
/// as non-malleable and safe.
///
/// # Returns
///
/// Returns a tuple `(safe, non-malleable)` to avoid the fact that
/// non-malleability depends on safety and we would like to cache results.
pub fn is_safe_nonmalleable(&self) -> (bool, bool) {
use Policy::*;
let mut acc = vec![];
for data in Arc::new(self).post_order_iter() {
let acc_for_child_n = |n| acc[data.child_indices[n]];
let new = match data.node {
Unsatisfiable | Trivial | Key(_) => (true, true),
Sha256(_) | Hash256(_) | Ripemd160(_) | Hash160(_) | After(_) | Older(_) => {
(false, true)
}
And(ref subs) => {
let (atleast_one_safe, all_non_mall) = (0..subs.len())
.map(acc_for_child_n)
.fold((false, true), |acc, x: (bool, bool)| (acc.0 || x.0, acc.1 && x.1));
(atleast_one_safe, all_non_mall)
}
Or(ref subs) => {
let (all_safe, atleast_one_safe, all_non_mall) = (0..subs.len())
.map(acc_for_child_n)
.fold((true, false, true), |acc, x| {
(acc.0 && x.0, acc.1 || x.0, acc.2 && x.1)
});
(all_safe, atleast_one_safe && all_non_mall)
}
Thresh(ref thresh) => {
let (safe_count, non_mall_count) = (0..thresh.n()).map(acc_for_child_n).fold(
(0, 0),
|(safe_count, non_mall_count), (safe, non_mall)| {
(safe_count + safe as usize, non_mall_count + non_mall as usize)
},
);
(
safe_count >= (thresh.n() - thresh.k() + 1),
non_mall_count == thresh.n() && safe_count >= (thresh.n() - thresh.k()),
)
}
};
acc.push(new);
}
// Ok to unwrap because we know we processed at least one node.
acc.pop().unwrap()
}
}
impl<Pk: MiniscriptKey> fmt::Debug for Policy<Pk> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Policy::Unsatisfiable => f.write_str("UNSATISFIABLE()"),
Policy::Trivial => f.write_str("TRIVIAL()"),
Policy::Key(ref pk) => write!(f, "pk({:?})", pk),
Policy::After(n) => write!(f, "after({})", n),
Policy::Older(n) => write!(f, "older({})", n),
Policy::Sha256(ref h) => write!(f, "sha256({})", h),
Policy::Hash256(ref h) => write!(f, "hash256({})", h),
Policy::Ripemd160(ref h) => write!(f, "ripemd160({})", h),
Policy::Hash160(ref h) => write!(f, "hash160({})", h),
Policy::And(ref subs) => {
f.write_str("and(")?;
if !subs.is_empty() {
write!(f, "{:?}", subs[0])?;
for sub in &subs[1..] {
write!(f, ",{:?}", sub)?;
}
}
f.write_str(")")
}
Policy::Or(ref subs) => {
f.write_str("or(")?;
if !subs.is_empty() {
write!(f, "{}@{:?}", subs[0].0, subs[0].1)?;
for sub in &subs[1..] {
write!(f, ",{}@{:?}", sub.0, sub.1)?;
}
}
f.write_str(")")
}
Policy::Thresh(ref thresh) => fmt::Debug::fmt(&thresh.debug("thresh", true), f),
}
}
}
impl<Pk: MiniscriptKey> fmt::Display for Policy<Pk> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Policy::Unsatisfiable => f.write_str("UNSATISFIABLE"),
Policy::Trivial => f.write_str("TRIVIAL"),
Policy::Key(ref pk) => write!(f, "pk({})", pk),
Policy::After(n) => write!(f, "after({})", n),
Policy::Older(n) => write!(f, "older({})", n),
Policy::Sha256(ref h) => write!(f, "sha256({})", h),
Policy::Hash256(ref h) => write!(f, "hash256({})", h),
Policy::Ripemd160(ref h) => write!(f, "ripemd160({})", h),
Policy::Hash160(ref h) => write!(f, "hash160({})", h),
Policy::And(ref subs) => {
f.write_str("and(")?;
if !subs.is_empty() {
write!(f, "{}", subs[0])?;
for sub in &subs[1..] {
write!(f, ",{}", sub)?;
}
}
f.write_str(")")
}
Policy::Or(ref subs) => {
f.write_str("or(")?;
if !subs.is_empty() {
write!(f, "{}@{}", subs[0].0, subs[0].1)?;
for sub in &subs[1..] {
write!(f, ",{}@{}", sub.0, sub.1)?;
}
}
f.write_str(")")
}
Policy::Thresh(ref thresh) => fmt::Display::fmt(&thresh.display("thresh", true), f),
}
}
}
impl<Pk: FromStrKey> str::FromStr for Policy<Pk> {
type Err = Error;
fn from_str(s: &str) -> Result<Policy<Pk>, Error> {
expression::check_valid_chars(s)?;
let tree = expression::Tree::from_str(s)?;
let policy: Policy<Pk> = FromTree::from_tree(&tree)?;
policy.check_timelocks()?;
Ok(policy)
}
}
serde_string_impl_pk!(Policy, "a miniscript concrete policy");
impl<Pk: FromStrKey> Policy<Pk> {
/// Helper function for `from_tree` to parse subexpressions with
/// names of the form x@y
fn from_tree_prob(
top: &expression::Tree,
allow_prob: bool,
) -> Result<(usize, Policy<Pk>), Error> {
let frag_prob;
let frag_name;
let mut name_split = top.name.split('@');
match (name_split.next(), name_split.next(), name_split.next()) {
(None, _, _) => {
frag_prob = 1;
frag_name = "";
}
(Some(name), None, _) => {
frag_prob = 1;
frag_name = name;
}
(Some(prob), Some(name), None) => {
if !allow_prob {
return Err(Error::AtOutsideOr(top.name.to_owned()));
}
frag_prob = expression::parse_num(prob)? as usize;
frag_name = name;
}
(Some(_), Some(_), Some(_)) => {
return Err(Error::MultiColon(top.name.to_owned()));
}
}
match (frag_name, top.args.len() as u32) {
("UNSATISFIABLE", 0) => Ok(Policy::Unsatisfiable),
("TRIVIAL", 0) => Ok(Policy::Trivial),
("pk", 1) => expression::terminal(&top.args[0], |pk| Pk::from_str(pk).map(Policy::Key)),
("after", 1) => expression::terminal(&top.args[0], |x| {
expression::parse_num(x)
.and_then(|x| AbsLockTime::from_consensus(x).map_err(Error::AbsoluteLockTime))
.map(Policy::After)
}),
("older", 1) => expression::terminal(&top.args[0], |x| {
expression::parse_num(x)
.and_then(|x| RelLockTime::from_consensus(x).map_err(Error::RelativeLockTime))
.map(Policy::Older)
}),
("sha256", 1) => expression::terminal(&top.args[0], |x| {
<Pk::Sha256 as core::str::FromStr>::from_str(x).map(Policy::Sha256)
}),
("hash256", 1) => expression::terminal(&top.args[0], |x| {
<Pk::Hash256 as core::str::FromStr>::from_str(x).map(Policy::Hash256)
}),
("ripemd160", 1) => expression::terminal(&top.args[0], |x| {
<Pk::Ripemd160 as core::str::FromStr>::from_str(x).map(Policy::Ripemd160)
}),
("hash160", 1) => expression::terminal(&top.args[0], |x| {
<Pk::Hash160 as core::str::FromStr>::from_str(x).map(Policy::Hash160)
}),
("and", _) => {
if top.args.len() != 2 {
return Err(Error::PolicyError(PolicyError::NonBinaryArgAnd));
}
let mut subs = Vec::with_capacity(top.args.len());
for arg in &top.args {
subs.push(Arc::new(Policy::from_tree(arg)?));
}
Ok(Policy::And(subs))
}
("or", _) => {
if top.args.len() != 2 {
return Err(Error::PolicyError(PolicyError::NonBinaryArgOr));
}
let mut subs = Vec::with_capacity(top.args.len());
for arg in &top.args {
subs.push(Policy::from_tree_prob(arg, true)?);
}
Ok(Policy::Or(
subs.into_iter()
.map(|(prob, sub)| (prob, Arc::new(sub)))
.collect(),
))
}
("thresh", _) => top
.to_null_threshold()
.map_err(Error::ParseThreshold)?
.translate_by_index(|i| Policy::from_tree(&top.args[1 + i]).map(Arc::new))
.map(Policy::Thresh),
_ => Err(errstr(top.name)),
}
.map(|res| (frag_prob, res))
}
}
impl<Pk: FromStrKey> expression::FromTree for Policy<Pk> {
fn from_tree(top: &expression::Tree) -> Result<Policy<Pk>, Error> {
Policy::from_tree_prob(top, false).map(|(_, result)| result)
}
}
/// Creates a Huffman Tree from compiled [`Miniscript`] nodes.
#[cfg(feature = "compiler")]
fn with_huffman_tree<Pk: MiniscriptKey>(
ms: Vec<(OrdF64, Miniscript<Pk, Tap>)>,
) -> Result<TapTree<Pk>, Error> {
let mut node_weights = BinaryHeap::<(Reverse<OrdF64>, TapTree<Pk>)>::new();
for (prob, script) in ms {
node_weights.push((Reverse(prob), TapTree::Leaf(Arc::new(script))));
}
if node_weights.is_empty() {
return Err(errstr("Empty Miniscript compilation"));
}
while node_weights.len() > 1 {
let (p1, s1) = node_weights.pop().expect("len must atleast be two");
let (p2, s2) = node_weights.pop().expect("len must atleast be two");
let p = (p1.0).0 + (p2.0).0;
node_weights.push((Reverse(OrdF64(p)), TapTree::combine(s1, s2)));
}
debug_assert!(node_weights.len() == 1);
let node = node_weights
.pop()
.expect("huffman tree algorithm is broken")
.1;
Ok(node)
}
/// Enumerates a [`Policy::Thresh(k, ..n..)`] into `n` different thresh's.
///
/// ## Strategy
///
/// `thresh(k, x_1...x_n) := thresh(1, thresh(k, x_2...x_n), thresh(k, x_1x_3...x_n), ...., thresh(k, x_1...x_{n-1}))`
/// by the simple argument that choosing `k` conditions from `n` available conditions might not contain
/// any one of the conditions exclusively.
#[cfg(feature = "compiler")]
fn generate_combination<Pk: MiniscriptKey>(
thresh: &Threshold<Arc<Policy<Pk>>, 0>,
prob: f64,
) -> Vec<(f64, Arc<Policy<Pk>>)> {
debug_assert!(thresh.k() < thresh.n());
let prob_over_n = prob / thresh.n() as f64;
let mut ret: Vec<(f64, Arc<Policy<Pk>>)> = vec![];
for i in 0..thresh.n() {
let thresh_less_1 = Threshold::from_iter(
thresh.k(),
thresh
.iter()
.enumerate()
.filter_map(|(j, sub)| if j != i { Some(Arc::clone(sub)) } else { None }),
)
.expect("k is strictly less than n, so (k, n-1) is a valid threshold");
ret.push((prob_over_n, Arc::new(Policy::Thresh(thresh_less_1))));
}
ret
}
impl<'a, Pk: MiniscriptKey> TreeLike for &'a Policy<Pk> {
fn as_node(&self) -> Tree<Self> {
use Policy::*;
match *self {
Unsatisfiable | Trivial | Key(_) | After(_) | Older(_) | Sha256(_) | Hash256(_)
| Ripemd160(_) | Hash160(_) => Tree::Nullary,
And(ref subs) => Tree::Nary(subs.iter().map(Arc::as_ref).collect()),
Or(ref v) => Tree::Nary(v.iter().map(|(_, p)| p.as_ref()).collect()),
Thresh(ref thresh) => Tree::Nary(thresh.iter().map(Arc::as_ref).collect()),
}
}
}
impl<Pk: MiniscriptKey> TreeLike for Arc<Policy<Pk>> {
fn as_node(&self) -> Tree<Self> {
use Policy::*;
match self.as_ref() {
Unsatisfiable | Trivial | Key(_) | After(_) | Older(_) | Sha256(_) | Hash256(_)
| Ripemd160(_) | Hash160(_) => Tree::Nullary,
And(ref subs) => Tree::Nary(subs.iter().map(Arc::clone).collect()),
Or(ref v) => Tree::Nary(v.iter().map(|(_, p)| Arc::clone(p)).collect()),
Thresh(ref thresh) => Tree::Nary(thresh.iter().map(Arc::clone).collect()),
}
}
}
#[cfg(all(test, feature = "compiler"))]
mod compiler_tests {
use core::str::FromStr;
use super::*;
#[test]
fn test_gen_comb() {
let policies: Vec<Arc<Concrete<String>>> = vec!["pk(A)", "pk(B)", "pk(C)", "pk(D)"]
.into_iter()
.map(|st| policy_str!("{}", st))
.map(Arc::new)
.collect();
let thresh = Threshold::new(2, policies).unwrap();
let combinations = generate_combination(&thresh, 1.0);
let comb_a: Vec<Policy<String>> = vec![
policy_str!("pk(B)"),
policy_str!("pk(C)"),
policy_str!("pk(D)"),
];
let comb_b: Vec<Policy<String>> = vec![
policy_str!("pk(A)"),
policy_str!("pk(C)"),
policy_str!("pk(D)"),
];
let comb_c: Vec<Policy<String>> = vec![
policy_str!("pk(A)"),
policy_str!("pk(B)"),
policy_str!("pk(D)"),
];
let comb_d: Vec<Policy<String>> = vec![
policy_str!("pk(A)"),
policy_str!("pk(B)"),
policy_str!("pk(C)"),
];
let expected_comb = vec![comb_a, comb_b, comb_c, comb_d]
.into_iter()
.map(|sub_pol| {
let expected_thresh =
Threshold::from_iter(2, sub_pol.into_iter().map(Arc::new)).unwrap();
(0.25, Arc::new(Policy::Thresh(expected_thresh)))
})
.collect::<Vec<_>>();
assert_eq!(combinations, expected_comb);
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use super::*;
#[test]
fn for_each_key_count_keys() {
let liquid_pol = Policy::<String>::from_str(
"or(and(older(4096),thresh(2,pk(A),pk(B),pk(C))),thresh(11,pk(F1),pk(F2),pk(F3),pk(F4),pk(F5),pk(F6),pk(F7),pk(F8),pk(F9),pk(F10),pk(F11),pk(F12),pk(F13),pk(F14)))").unwrap();
let mut count = 0;
assert!(liquid_pol.for_each_key(|_| {
count += 1;
true
}));
assert_eq!(count, 17);
}
#[test]
fn for_each_key_fails_predicate() {
let policy =
Policy::<String>::from_str("or(and(pk(key0),pk(key1)),pk(oddnamedkey))").unwrap();
assert!(!policy.for_each_key(|k| k.starts_with("key")));
}
#[test]
fn tranaslate_pk() {
pub struct TestTranslator;
impl Translator<String, String, ()> for TestTranslator {
fn pk(&mut self, pk: &String) -> Result<String, ()> {
let new = format!("NEW-{}", pk);
Ok(new.to_string())
}
fn sha256(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
fn hash256(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
fn ripemd160(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
fn hash160(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
}
let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
let mut t = TestTranslator;
let want = Policy::<String>::from_str("or(and(pk(NEW-A),pk(NEW-B)),pk(NEW-C))").unwrap();
let got = policy
.translate_pk(&mut t)
.expect("failed to translate keys");
assert_eq!(got, want);
}
#[test]
fn translate_unsatisfiable_pk() {
let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
let want = Policy::<String>::from_str("or(and(pk(A),UNSATISFIABLE),pk(C))").unwrap();
let got = policy.translate_unsatisfiable_pk(&"B".to_string());
assert_eq!(got, want);
}
#[test]
fn keys() {
let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
let want = vec!["A", "B", "C"];
let got = policy.keys();
assert_eq!(got, want);
}
#[test]
#[cfg(feature = "compiler")]
fn num_tap_leaves() {
let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
assert_eq!(policy.num_tap_leaves(), 2);
}
#[test]
#[should_panic]
fn check_timelocks() {
// This implicitly tests the check_timelocks API (has height and time locks).
let _ = Policy::<String>::from_str("and(after(10),after(500000000))").unwrap();
}
}