1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
// SPDX-License-Identifier: CC0-1.0

//! Concrete Policies
//!

use core::{fmt, str};
#[cfg(feature = "std")]
use std::error;

use bitcoin::absolute;
#[cfg(feature = "compiler")]
use {
    crate::descriptor::TapTree,
    crate::miniscript::ScriptContext,
    crate::policy::compiler::CompilerError,
    crate::policy::compiler::OrdF64,
    crate::policy::{compiler, Concrete, Liftable, Semantic},
    crate::Descriptor,
    crate::Miniscript,
    crate::Tap,
    core::cmp::Reverse,
};

use super::ENTAILMENT_MAX_TERMINALS;
use crate::expression::{self, FromTree};
use crate::iter::{Tree, TreeLike};
use crate::miniscript::types::extra_props::TimelockInfo;
use crate::prelude::*;
use crate::sync::Arc;
#[cfg(all(doc, not(feature = "compiler")))]
use crate::Descriptor;
use crate::{
    errstr, AbsLockTime, Error, ForEachKey, FromStrKey, MiniscriptKey, RelLockTime, Threshold,
    Translator,
};

/// Maximum TapLeafs allowed in a compiled TapTree
#[cfg(feature = "compiler")]
const MAX_COMPILATION_LEAVES: usize = 1024;

/// Concrete policy which corresponds directly to a miniscript structure,
/// and whose disjunctions are annotated with satisfaction probabilities
/// to assist the compiler.
// Currently the vectors in And/Or are limited to two elements, this is a general miniscript thing
// not specific to rust-miniscript. Eventually we would like to extend these to be n-ary, but first
// we need to decide on a game plan for how to efficiently compile n-ary disjunctions
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Policy<Pk: MiniscriptKey> {
    /// Unsatisfiable.
    Unsatisfiable,
    /// Trivially satisfiable.
    Trivial,
    /// A public key which must sign to satisfy the descriptor.
    Key(Pk),
    /// An absolute locktime restriction.
    After(AbsLockTime),
    /// A relative locktime restriction.
    Older(RelLockTime),
    /// A SHA256 whose preimage must be provided to satisfy the descriptor.
    Sha256(Pk::Sha256),
    /// A SHA256d whose preimage must be provided to satisfy the descriptor.
    Hash256(Pk::Hash256),
    /// A RIPEMD160 whose preimage must be provided to satisfy the descriptor.
    Ripemd160(Pk::Ripemd160),
    /// A HASH160 whose preimage must be provided to satisfy the descriptor.
    Hash160(Pk::Hash160),
    /// A list of sub-policies, all of which must be satisfied.
    And(Vec<Arc<Policy<Pk>>>),
    /// A list of sub-policies, one of which must be satisfied, along with
    /// relative probabilities for each one.
    Or(Vec<(usize, Arc<Policy<Pk>>)>),
    /// A set of descriptors, satisfactions must be provided for `k` of them.
    Thresh(Threshold<Arc<Policy<Pk>>, 0>),
}

/// Detailed error type for concrete policies.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum PolicyError {
    /// `And` fragments only support two args.
    NonBinaryArgAnd,
    /// `Or` fragments only support two args.
    NonBinaryArgOr,
    /// Semantic Policy Error: `And` `Or` fragments must take args: `k > 1`.
    InsufficientArgsforAnd,
    /// Semantic policy error: `And` `Or` fragments must take args: `k > 1`.
    InsufficientArgsforOr,
    /// Entailment max terminals exceeded.
    EntailmentMaxTerminals,
    /// Cannot lift policies that have a combination of height and timelocks.
    HeightTimelockCombination,
    /// Duplicate Public Keys.
    DuplicatePubKeys,
}

/// Descriptor context for [`Policy`] compilation into a [`Descriptor`].
pub enum DescriptorCtx<Pk> {
    /// See docs for [`Descriptor::Bare`].
    Bare,
    /// See docs for [`Descriptor::Sh`].
    Sh,
    /// See docs for [`Descriptor::Wsh`].
    Wsh,
    /// See docs for [`Descriptor::Wsh`].
    ShWsh,
    /// [`Descriptor::Tr`] where the `Option<Pk>` corresponds to the internal key if no
    /// internal key can be inferred from the given policy.
    Tr(Option<Pk>),
}

impl fmt::Display for PolicyError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            PolicyError::NonBinaryArgAnd => {
                f.write_str("And policy fragment must take 2 arguments")
            }
            PolicyError::NonBinaryArgOr => f.write_str("Or policy fragment must take 2 arguments"),
            PolicyError::InsufficientArgsforAnd => {
                f.write_str("Semantic Policy 'And' fragment must have at least 2 args ")
            }
            PolicyError::InsufficientArgsforOr => {
                f.write_str("Semantic Policy 'Or' fragment must have at least 2 args ")
            }
            PolicyError::EntailmentMaxTerminals => {
                write!(f, "Policy entailment only supports {} terminals", ENTAILMENT_MAX_TERMINALS)
            }
            PolicyError::HeightTimelockCombination => {
                f.write_str("Cannot lift policies that have a heightlock and timelock combination")
            }
            PolicyError::DuplicatePubKeys => f.write_str("Policy contains duplicate keys"),
        }
    }
}

#[cfg(feature = "std")]
impl error::Error for PolicyError {
    fn cause(&self) -> Option<&dyn error::Error> {
        use self::PolicyError::*;

        match self {
            NonBinaryArgAnd
            | NonBinaryArgOr
            | InsufficientArgsforAnd
            | InsufficientArgsforOr
            | EntailmentMaxTerminals
            | HeightTimelockCombination
            | DuplicatePubKeys => None,
        }
    }
}

impl<Pk: MiniscriptKey> Policy<Pk> {
    /// Flattens the [`Policy`] tree structure into a vector of tuples `(leaf script, leaf probability)`
    /// with leaf probabilities corresponding to odds for each sub-branch in the policy.
    /// We calculate the probability of selecting the sub-branch at every level and calculate the
    /// leaf probabilities as the probability of traversing through required branches to reach the
    /// leaf node, i.e. multiplication of the respective probabilities.
    ///
    /// For example, the policy tree:       OR
    ///                                   /   \
    ///                                  2     1            odds
    ///                                /        \
    ///                               A         OR
    ///                                        /  \
    ///                                       3    1        odds
    ///                                     /       \
    ///                                    B         C
    ///
    /// gives the vector [(2/3, A), (1/3 * 3/4, B), (1/3 * 1/4, C)].
    ///
    /// ## Constraints
    ///
    /// Since this splitting might lead to exponential blow-up, we constrain the number of
    /// leaf-nodes to [`MAX_COMPILATION_LEAVES`].
    #[cfg(feature = "compiler")]
    fn to_tapleaf_prob_vec(&self, prob: f64) -> Vec<(f64, Policy<Pk>)> {
        match self {
            Policy::Or(ref subs) => {
                let total_odds: usize = subs.iter().map(|(ref k, _)| k).sum();
                subs.iter()
                    .flat_map(|(k, ref policy)| {
                        policy.to_tapleaf_prob_vec(prob * *k as f64 / total_odds as f64)
                    })
                    .collect::<Vec<_>>()
            }
            Policy::Thresh(ref thresh) if thresh.is_or() => {
                let total_odds = thresh.n();
                thresh
                    .iter()
                    .flat_map(|policy| policy.to_tapleaf_prob_vec(prob / total_odds as f64))
                    .collect::<Vec<_>>()
            }
            x => vec![(prob, x.clone())],
        }
    }

    /// Extracts the internal_key from this policy tree.
    #[cfg(feature = "compiler")]
    fn extract_key(self, unspendable_key: Option<Pk>) -> Result<(Pk, Policy<Pk>), Error> {
        let mut internal_key: Option<Pk> = None;
        {
            let mut prob = 0.;
            let semantic_policy = self.lift()?;
            let concrete_keys = self.keys();
            let key_prob_map: BTreeMap<_, _> = self
                .to_tapleaf_prob_vec(1.0)
                .into_iter()
                .filter(|(_, ref pol)| matches!(pol, Concrete::Key(..)))
                .map(|(prob, key)| (key, prob))
                .collect();

            for key in concrete_keys.into_iter() {
                if semantic_policy
                    .clone()
                    .satisfy_constraint(&Semantic::Key(key.clone()), true)
                    == Semantic::Trivial
                {
                    match key_prob_map.get(&Concrete::Key(key.clone())) {
                        Some(val) => {
                            if *val > prob {
                                prob = *val;
                                internal_key = Some(key.clone());
                            }
                        }
                        None => return Err(errstr("Key should have existed in the BTreeMap!")),
                    }
                }
            }
        }
        match (internal_key, unspendable_key) {
            (Some(ref key), _) => Ok((key.clone(), self.translate_unsatisfiable_pk(key))),
            (_, Some(key)) => Ok((key, self)),
            _ => Err(errstr("No viable internal key found.")),
        }
    }

    /// Compiles the [`Policy`] into a [`Descriptor::Tr`].
    ///
    /// ### TapTree compilation
    ///
    /// The policy tree constructed by root-level disjunctions over [`Policy::Or`] and
    /// [`Policy::Thresh`](1, ..) which is flattened into a vector (with respective
    /// probabilities derived from odds) of policies.
    ///
    /// For example, the policy `thresh(1,or(pk(A),pk(B)),and(or(pk(C),pk(D)),pk(E)))` gives the
    /// vector `[pk(A),pk(B),and(or(pk(C),pk(D)),pk(E)))]`. Each policy in the vector is compiled
    /// into the respective miniscripts. A Huffman Tree is created from this vector which optimizes
    /// over the probabilitity of satisfaction for the respective branch in the TapTree.
    ///
    /// Refer to [this link](https://gist.github.com/SarcasticNastik/9e70b2b43375aab3e78c51e09c288c89)
    /// or [doc/Tr compiler.pdf] in the root of the repository to understand why such compilation
    /// is also *cost-efficient*.
    // TODO: We might require other compile errors for Taproot.
    #[cfg(feature = "compiler")]
    pub fn compile_tr(&self, unspendable_key: Option<Pk>) -> Result<Descriptor<Pk>, Error> {
        self.is_valid()?; // Check for validity
        match self.is_safe_nonmalleable() {
            (false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
            (_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
            _ => {
                let (internal_key, policy) = self.clone().extract_key(unspendable_key)?;
                policy.check_num_tapleaves()?;
                let tree = Descriptor::new_tr(
                    internal_key,
                    match policy {
                        Policy::Trivial => None,
                        policy => {
                            let vec_policies: Vec<_> = policy.to_tapleaf_prob_vec(1.0);
                            let mut leaf_compilations: Vec<(OrdF64, Miniscript<Pk, Tap>)> = vec![];
                            for (prob, pol) in vec_policies {
                                // policy corresponding to the key (replaced by unsatisfiable) is skipped
                                if pol == Policy::Unsatisfiable {
                                    continue;
                                }
                                let compilation = compiler::best_compilation::<Pk, Tap>(&pol)?;
                                compilation.sanity_check()?;
                                leaf_compilations.push((OrdF64(prob), compilation));
                            }
                            let tap_tree = with_huffman_tree::<Pk>(leaf_compilations)?;
                            Some(tap_tree)
                        }
                    },
                )?;
                Ok(tree)
            }
        }
    }

    /// Compiles the [`Policy`] into a [`Descriptor::Tr`].
    ///
    /// ### TapTree compilation
    ///
    /// The policy tree constructed by root-level disjunctions over [`Policy::Or`] and
    /// [`Policy::Thresh`](k, ..n..) which is flattened into a vector (with respective
    /// probabilities derived from odds) of policies. For example, the policy
    /// `thresh(1,or(pk(A),pk(B)),and(or(pk(C),pk(D)),pk(E)))` gives the vector
    /// `[pk(A),pk(B),and(or(pk(C),pk(D)),pk(E)))]`.
    ///
    /// ### Policy enumeration
    ///
    /// Generates a root-level disjunctive tree over the given policy tree.
    ///
    /// Uses a fixed-point algorithm to enumerate the disjunctions until exhaustive root-level
    /// enumeration or limits exceed. For a given [`Policy`], we maintain an [ordered
    /// set](`BTreeSet`) of `(prob, policy)` (ordered by probability) to maintain the list of
    /// enumerated sub-policies whose disjunction is isomorphic to initial policy (*invariant*).
    #[cfg(feature = "compiler")]
    pub fn compile_tr_private_experimental(
        &self,
        unspendable_key: Option<Pk>,
    ) -> Result<Descriptor<Pk>, Error> {
        self.is_valid()?; // Check for validity
        match self.is_safe_nonmalleable() {
            (false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
            (_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
            _ => {
                let (internal_key, policy) = self.clone().extract_key(unspendable_key)?;
                let tree = Descriptor::new_tr(
                    internal_key,
                    match policy {
                        Policy::Trivial => None,
                        policy => {
                            let leaf_compilations: Vec<_> = policy
                                .enumerate_policy_tree(1.0)
                                .into_iter()
                                .filter(|x| x.1 != Arc::new(Policy::Unsatisfiable))
                                .map(|(prob, pol)| {
                                    (
                                        OrdF64(prob),
                                        compiler::best_compilation(pol.as_ref()).unwrap(),
                                    )
                                })
                                .collect();
                            let tap_tree = with_huffman_tree::<Pk>(leaf_compilations).unwrap();
                            Some(tap_tree)
                        }
                    },
                )?;
                Ok(tree)
            }
        }
    }

    /// Compiles the [`Policy`] into `desc_ctx` [`Descriptor`]
    ///
    /// In case of [`DescriptorCtx::Tr`], `internal_key` is used for the taproot compilation when
    /// no public key can be inferred from the given policy.
    ///
    /// # NOTE:
    ///
    /// It is **not recommended** to use policy as a stable identifier for a miniscript. You should
    /// use the policy compiler once, and then use the miniscript output as a stable identifier. See
    /// the compiler document in [`doc/compiler.md`] for more details.
    #[cfg(feature = "compiler")]
    pub fn compile_to_descriptor<Ctx: ScriptContext>(
        &self,
        desc_ctx: DescriptorCtx<Pk>,
    ) -> Result<Descriptor<Pk>, Error> {
        self.is_valid()?;
        match self.is_safe_nonmalleable() {
            (false, _) => Err(Error::from(CompilerError::TopLevelNonSafe)),
            (_, false) => Err(Error::from(CompilerError::ImpossibleNonMalleableCompilation)),
            _ => match desc_ctx {
                DescriptorCtx::Bare => Descriptor::new_bare(compiler::best_compilation(self)?),
                DescriptorCtx::Sh => Descriptor::new_sh(compiler::best_compilation(self)?),
                DescriptorCtx::Wsh => Descriptor::new_wsh(compiler::best_compilation(self)?),
                DescriptorCtx::ShWsh => Descriptor::new_sh_wsh(compiler::best_compilation(self)?),
                DescriptorCtx::Tr(unspendable_key) => self.compile_tr(unspendable_key),
            },
        }
    }

    /// Compiles the descriptor into an optimized `Miniscript` representation.
    ///
    /// # NOTE:
    ///
    /// It is **not recommended** to use policy as a stable identifier for a miniscript. You should
    /// use the policy compiler once, and then use the miniscript output as a stable identifier. See
    /// the compiler document in doc/compiler.md for more details.
    #[cfg(feature = "compiler")]
    pub fn compile<Ctx: ScriptContext>(&self) -> Result<Miniscript<Pk, Ctx>, CompilerError> {
        self.is_valid()?;
        match self.is_safe_nonmalleable() {
            (false, _) => Err(CompilerError::TopLevelNonSafe),
            (_, false) => Err(CompilerError::ImpossibleNonMalleableCompilation),
            _ => compiler::best_compilation(self),
        }
    }
}

#[cfg(feature = "compiler")]
impl<Pk: MiniscriptKey> Policy<Pk> {
    /// Returns a vector of policies whose disjunction is isomorphic to the initial one.
    ///
    /// This function is supposed to incrementally expand i.e. represent the policy as
    /// disjunction over sub-policies output by it. The probability calculations are similar
    /// to [`Policy::to_tapleaf_prob_vec`].
    #[cfg(feature = "compiler")]
    fn enumerate_pol(&self, prob: f64) -> Vec<(f64, Arc<Self>)> {
        match self {
            Policy::Or(subs) => {
                let total_odds = subs.iter().fold(0, |acc, x| acc + x.0);
                subs.iter()
                    .map(|(odds, pol)| (prob * *odds as f64 / total_odds as f64, pol.clone()))
                    .collect::<Vec<_>>()
            }
            Policy::Thresh(ref thresh) if thresh.is_or() => {
                let total_odds = thresh.n();
                thresh
                    .iter()
                    .map(|pol| (prob / total_odds as f64, pol.clone()))
                    .collect::<Vec<_>>()
            }
            Policy::Thresh(ref thresh) if !thresh.is_and() => generate_combination(thresh, prob),
            pol => vec![(prob, Arc::new(pol.clone()))],
        }
    }

    /// Generates a root-level disjunctive tree over the given policy tree.
    ///
    /// Uses a fixed-point algorithm to enumerate the disjunctions until exhaustive root-level
    /// enumeration or limits exceed. For a given [`Policy`], we maintain an [ordered
    /// set](`BTreeSet`) of `(prob, policy)` (ordered by probability) to maintain the list of
    /// enumerated sub-policies whose disjunction is isomorphic to initial policy (*invariant*).
    #[cfg(feature = "compiler")]
    fn enumerate_policy_tree(self, prob: f64) -> Vec<(f64, Arc<Self>)> {
        let mut tapleaf_prob_vec = BTreeSet::<(Reverse<OrdF64>, Arc<Self>)>::new();
        // Store probability corresponding to policy in the enumerated tree. This is required since
        // owing to the current [policy element enumeration algorithm][`Policy::enumerate_pol`],
        // two passes of the algorithm might result in same sub-policy showing up. Currently, we
        // merge the nodes by adding up the corresponding probabilities for the same policy.
        let mut pol_prob_map = BTreeMap::<Arc<Self>, OrdF64>::new();

        let arc_self = Arc::new(self);
        tapleaf_prob_vec.insert((Reverse(OrdF64(prob)), Arc::clone(&arc_self)));
        pol_prob_map.insert(Arc::clone(&arc_self), OrdF64(prob));

        // Since we know that policy enumeration *must* result in increase in total number of nodes,
        // we can maintain the length of the ordered set to check if the
        // [enumeration pass][`Policy::enumerate_pol`] results in further policy split or not.
        let mut prev_len = 0usize;
        // This is required since we merge some corresponding policy nodes, so we can explicitly
        // store the variables
        let mut enum_len = tapleaf_prob_vec.len();

        let mut ret: Vec<(f64, Arc<Self>)> = vec![];

        // Stopping condition: When NONE of the inputs can be further enumerated.
        'outer: loop {
            //--- FIND a plausible node ---
            let mut prob: Reverse<OrdF64> = Reverse(OrdF64(0.0));
            let mut curr_policy: Arc<Self> = Arc::new(Policy::Unsatisfiable);
            let mut curr_pol_replace_vec: Vec<(f64, Arc<Self>)> = vec![];
            let mut no_more_enum = false;

            // The nodes which can't be enumerated further are directly appended to ret and removed
            // from the ordered set.
            let mut to_del: Vec<(f64, Arc<Self>)> = vec![];
            'inner: for (i, (p, pol)) in tapleaf_prob_vec.iter().enumerate() {
                curr_pol_replace_vec = pol.enumerate_pol(p.0 .0);
                enum_len += curr_pol_replace_vec.len() - 1; // A disjunctive node should have seperated this into more nodes
                assert!(prev_len <= enum_len);

                if prev_len < enum_len {
                    // Plausible node found
                    prob = *p;
                    curr_policy = Arc::clone(pol);
                    break 'inner;
                } else if i == tapleaf_prob_vec.len() - 1 {
                    // No enumerable node found i.e. STOP
                    // Move all the elements to final return set
                    no_more_enum = true;
                } else {
                    // Either node is enumerable, or we have
                    // Mark all non-enumerable nodes to remove,
                    // if not returning value in the current iteration.
                    to_del.push((p.0 .0, Arc::clone(pol)));
                }
            }

            // --- Sanity Checks ---
            if enum_len > MAX_COMPILATION_LEAVES || no_more_enum {
                for (p, pol) in tapleaf_prob_vec.into_iter() {
                    ret.push((p.0 .0, pol));
                }
                break 'outer;
            }

            // If total number of nodes are in limits, we remove the current node and replace it
            // with children nodes

            // Remove current node
            assert!(tapleaf_prob_vec.remove(&(prob, curr_policy.clone())));

            // OPTIMIZATION - Move marked nodes into final vector
            for (p, pol) in to_del {
                assert!(tapleaf_prob_vec.remove(&(Reverse(OrdF64(p)), pol.clone())));
                ret.push((p, pol.clone()));
            }

            // Append node if not previously exists, else update the respective probability
            for (p, policy) in curr_pol_replace_vec {
                match pol_prob_map.get(&policy) {
                    Some(prev_prob) => {
                        assert!(tapleaf_prob_vec.remove(&(Reverse(*prev_prob), policy.clone())));
                        tapleaf_prob_vec.insert((Reverse(OrdF64(prev_prob.0 + p)), policy.clone()));
                        pol_prob_map.insert(policy.clone(), OrdF64(prev_prob.0 + p));
                    }
                    None => {
                        tapleaf_prob_vec.insert((Reverse(OrdF64(p)), policy.clone()));
                        pol_prob_map.insert(policy.clone(), OrdF64(p));
                    }
                }
            }
            // --- Update --- total sub-policies count (considering no merging of nodes)
            prev_len = enum_len;
        }

        ret
    }
}

impl<Pk: MiniscriptKey> ForEachKey<Pk> for Policy<Pk> {
    fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, mut pred: F) -> bool {
        self.pre_order_iter().all(|policy| match policy {
            Policy::Key(ref pk) => pred(pk),
            _ => true,
        })
    }
}

impl<Pk: MiniscriptKey> Policy<Pk> {
    /// Converts a policy using one kind of public key to another type of public key.
    ///
    /// For example usage please see [`crate::policy::semantic::Policy::translate_pk`].
    pub fn translate_pk<Q, E, T>(&self, t: &mut T) -> Result<Policy<Q>, E>
    where
        T: Translator<Pk, Q, E>,
        Q: MiniscriptKey,
    {
        use Policy::*;

        let mut translated = vec![];
        for data in self.post_order_iter() {
            let child_n = |n| Arc::clone(&translated[data.child_indices[n]]);

            let new_policy = match data.node {
                Unsatisfiable => Unsatisfiable,
                Trivial => Trivial,
                Key(ref pk) => t.pk(pk).map(Key)?,
                Sha256(ref h) => t.sha256(h).map(Sha256)?,
                Hash256(ref h) => t.hash256(h).map(Hash256)?,
                Ripemd160(ref h) => t.ripemd160(h).map(Ripemd160)?,
                Hash160(ref h) => t.hash160(h).map(Hash160)?,
                Older(ref n) => Older(*n),
                After(ref n) => After(*n),
                And(ref subs) => And((0..subs.len()).map(child_n).collect()),
                Or(ref subs) => Or(subs
                    .iter()
                    .enumerate()
                    .map(|(i, (prob, _))| (*prob, child_n(i)))
                    .collect()),
                Thresh(ref thresh) => {
                    Thresh(thresh.map_from_post_order_iter(&data.child_indices, &translated))
                }
            };
            translated.push(Arc::new(new_policy));
        }
        // Unwrap is ok because we know we processed at least one node.
        let root_node = translated.pop().unwrap();
        // Unwrap is ok because we know `root_node` is the only strong reference.
        Ok(Arc::try_unwrap(root_node).unwrap())
    }

    /// Translates `Concrete::Key(key)` to `Concrete::Unsatisfiable` when extracting `TapKey`.
    pub fn translate_unsatisfiable_pk(self, key: &Pk) -> Policy<Pk> {
        use Policy::*;

        let mut translated = vec![];
        for data in Arc::new(self).post_order_iter() {
            let child_n = |n| Arc::clone(&translated[data.child_indices[n]]);

            let new_policy = match data.node.as_ref() {
                Policy::Key(ref k) if k.clone() == *key => Some(Policy::Unsatisfiable),
                And(ref subs) => Some(And((0..subs.len()).map(child_n).collect())),
                Or(ref subs) => Some(Or(subs
                    .iter()
                    .enumerate()
                    .map(|(i, (prob, _))| (*prob, child_n(i)))
                    .collect())),
                Thresh(ref thresh) => {
                    Some(Thresh(thresh.map_from_post_order_iter(&data.child_indices, &translated)))
                }
                _ => None,
            };
            match new_policy {
                Some(new_policy) => translated.push(Arc::new(new_policy)),
                None => translated.push(Arc::clone(&data.node)),
            }
        }
        // Ok to unwrap because we know we processed at least one node.
        let root_node = translated.pop().unwrap();
        // Ok to unwrap because we know `root_node` is the only strong reference.
        Arc::try_unwrap(root_node).unwrap()
    }

    /// Gets all keys in the policy.
    pub fn keys(&self) -> Vec<&Pk> {
        self.pre_order_iter()
            .filter_map(|policy| match policy {
                Policy::Key(ref pk) => Some(pk),
                _ => None,
            })
            .collect()
    }

    /// Gets the number of [TapLeaf](`TapTree::Leaf`)s considering exhaustive root-level [`Policy::Or`]
    /// and [`Policy::Thresh`] disjunctions for the `TapTree`.
    #[cfg(feature = "compiler")]
    fn num_tap_leaves(&self) -> usize {
        use Policy::*;

        let mut nums = vec![];
        for data in Arc::new(self).post_order_iter() {
            let num_for_child_n = |n| nums[data.child_indices[n]];

            let num = match data.node {
                Or(subs) => (0..subs.len()).map(num_for_child_n).sum(),
                Thresh(thresh) if thresh.is_or() => (0..thresh.n()).map(num_for_child_n).sum(),
                _ => 1,
            };
            nums.push(num);
        }
        // Ok to unwrap because we know we processed at least one node.
        nums.pop().unwrap()
    }

    /// Does checks on the number of `TapLeaf`s.
    #[cfg(feature = "compiler")]
    fn check_num_tapleaves(&self) -> Result<(), Error> {
        if self.num_tap_leaves() > MAX_COMPILATION_LEAVES {
            return Err(errstr("Too many Tapleaves"));
        }
        Ok(())
    }

    /// Checks whether the policy contains duplicate public keys.
    pub fn check_duplicate_keys(&self) -> Result<(), PolicyError> {
        let pks = self.keys();
        let pks_len = pks.len();
        let unique_pks_len = pks.into_iter().collect::<BTreeSet<_>>().len();

        if pks_len > unique_pks_len {
            Err(PolicyError::DuplicatePubKeys)
        } else {
            Ok(())
        }
    }

    /// Checks whether the given concrete policy contains a combination of
    /// timelocks and heightlocks.
    ///
    /// # Returns
    ///
    /// Returns an error if there is at least one satisfaction that contains
    /// a combination of heightlock and timelock.
    pub fn check_timelocks(&self) -> Result<(), PolicyError> {
        let aggregated_timelock_info = self.timelock_info();
        if aggregated_timelock_info.contains_combination {
            Err(PolicyError::HeightTimelockCombination)
        } else {
            Ok(())
        }
    }

    /// Processes `Policy` using `post_order_iter`, creates a `TimelockInfo` for each `Nullary` node
    /// and combines them together for `Nary` nodes.
    ///
    /// # Returns
    ///
    /// A single `TimelockInfo` that is the combination of all others after processing each node.
    fn timelock_info(&self) -> TimelockInfo {
        use Policy::*;

        let mut infos = vec![];
        for data in Arc::new(self).post_order_iter() {
            let info_for_child_n = |n| infos[data.child_indices[n]];

            let info = match data.node {
                Policy::After(ref t) => TimelockInfo {
                    csv_with_height: false,
                    csv_with_time: false,
                    cltv_with_height: absolute::LockTime::from(*t).is_block_height(),
                    cltv_with_time: absolute::LockTime::from(*t).is_block_time(),
                    contains_combination: false,
                },
                Policy::Older(ref t) => TimelockInfo {
                    csv_with_height: t.is_height_locked(),
                    csv_with_time: t.is_time_locked(),
                    cltv_with_height: false,
                    cltv_with_time: false,
                    contains_combination: false,
                },
                And(ref subs) => {
                    let iter = (0..subs.len()).map(info_for_child_n);
                    TimelockInfo::combine_threshold(subs.len(), iter)
                }
                Or(ref subs) => {
                    let iter = (0..subs.len()).map(info_for_child_n);
                    TimelockInfo::combine_threshold(1, iter)
                }
                Thresh(ref thresh) => {
                    let iter = (0..thresh.n()).map(info_for_child_n);
                    TimelockInfo::combine_threshold(thresh.k(), iter)
                }
                _ => TimelockInfo::default(),
            };
            infos.push(info);
        }
        // Ok to unwrap, we had to have visited at least one node.
        infos.pop().unwrap()
    }

    /// This returns whether the given policy is valid or not. It maybe possible that the policy
    /// contains Non-two argument `and`, `or` or a `0` arg thresh.
    /// Validity condition also checks whether there is a possible satisfaction
    /// combination of timelocks and heightlocks
    pub fn is_valid(&self) -> Result<(), PolicyError> {
        use Policy::*;

        self.check_timelocks()?;
        self.check_duplicate_keys()?;

        for policy in self.pre_order_iter() {
            match *policy {
                And(ref subs) => {
                    if subs.len() != 2 {
                        return Err(PolicyError::NonBinaryArgAnd);
                    }
                }
                Or(ref subs) => {
                    if subs.len() != 2 {
                        return Err(PolicyError::NonBinaryArgOr);
                    }
                }
                _ => {}
            }
        }
        Ok(())
    }

    /// Checks if any possible compilation of the policy could be compiled
    /// as non-malleable and safe.
    ///
    /// # Returns
    ///
    /// Returns a tuple `(safe, non-malleable)` to avoid the fact that
    /// non-malleability depends on safety and we would like to cache results.
    pub fn is_safe_nonmalleable(&self) -> (bool, bool) {
        use Policy::*;

        let mut acc = vec![];
        for data in Arc::new(self).post_order_iter() {
            let acc_for_child_n = |n| acc[data.child_indices[n]];

            let new = match data.node {
                Unsatisfiable | Trivial | Key(_) => (true, true),
                Sha256(_) | Hash256(_) | Ripemd160(_) | Hash160(_) | After(_) | Older(_) => {
                    (false, true)
                }
                And(ref subs) => {
                    let (atleast_one_safe, all_non_mall) = (0..subs.len())
                        .map(acc_for_child_n)
                        .fold((false, true), |acc, x: (bool, bool)| (acc.0 || x.0, acc.1 && x.1));
                    (atleast_one_safe, all_non_mall)
                }
                Or(ref subs) => {
                    let (all_safe, atleast_one_safe, all_non_mall) = (0..subs.len())
                        .map(acc_for_child_n)
                        .fold((true, false, true), |acc, x| {
                            (acc.0 && x.0, acc.1 || x.0, acc.2 && x.1)
                        });
                    (all_safe, atleast_one_safe && all_non_mall)
                }
                Thresh(ref thresh) => {
                    let (safe_count, non_mall_count) = (0..thresh.n()).map(acc_for_child_n).fold(
                        (0, 0),
                        |(safe_count, non_mall_count), (safe, non_mall)| {
                            (safe_count + safe as usize, non_mall_count + non_mall as usize)
                        },
                    );
                    (
                        safe_count >= (thresh.n() - thresh.k() + 1),
                        non_mall_count == thresh.n() && safe_count >= (thresh.n() - thresh.k()),
                    )
                }
            };
            acc.push(new);
        }
        // Ok to unwrap because we know we processed at least one node.
        acc.pop().unwrap()
    }
}

impl<Pk: MiniscriptKey> fmt::Debug for Policy<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Policy::Unsatisfiable => f.write_str("UNSATISFIABLE()"),
            Policy::Trivial => f.write_str("TRIVIAL()"),
            Policy::Key(ref pk) => write!(f, "pk({:?})", pk),
            Policy::After(n) => write!(f, "after({})", n),
            Policy::Older(n) => write!(f, "older({})", n),
            Policy::Sha256(ref h) => write!(f, "sha256({})", h),
            Policy::Hash256(ref h) => write!(f, "hash256({})", h),
            Policy::Ripemd160(ref h) => write!(f, "ripemd160({})", h),
            Policy::Hash160(ref h) => write!(f, "hash160({})", h),
            Policy::And(ref subs) => {
                f.write_str("and(")?;
                if !subs.is_empty() {
                    write!(f, "{:?}", subs[0])?;
                    for sub in &subs[1..] {
                        write!(f, ",{:?}", sub)?;
                    }
                }
                f.write_str(")")
            }
            Policy::Or(ref subs) => {
                f.write_str("or(")?;
                if !subs.is_empty() {
                    write!(f, "{}@{:?}", subs[0].0, subs[0].1)?;
                    for sub in &subs[1..] {
                        write!(f, ",{}@{:?}", sub.0, sub.1)?;
                    }
                }
                f.write_str(")")
            }
            Policy::Thresh(ref thresh) => fmt::Debug::fmt(&thresh.debug("thresh", true), f),
        }
    }
}

impl<Pk: MiniscriptKey> fmt::Display for Policy<Pk> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Policy::Unsatisfiable => f.write_str("UNSATISFIABLE"),
            Policy::Trivial => f.write_str("TRIVIAL"),
            Policy::Key(ref pk) => write!(f, "pk({})", pk),
            Policy::After(n) => write!(f, "after({})", n),
            Policy::Older(n) => write!(f, "older({})", n),
            Policy::Sha256(ref h) => write!(f, "sha256({})", h),
            Policy::Hash256(ref h) => write!(f, "hash256({})", h),
            Policy::Ripemd160(ref h) => write!(f, "ripemd160({})", h),
            Policy::Hash160(ref h) => write!(f, "hash160({})", h),
            Policy::And(ref subs) => {
                f.write_str("and(")?;
                if !subs.is_empty() {
                    write!(f, "{}", subs[0])?;
                    for sub in &subs[1..] {
                        write!(f, ",{}", sub)?;
                    }
                }
                f.write_str(")")
            }
            Policy::Or(ref subs) => {
                f.write_str("or(")?;
                if !subs.is_empty() {
                    write!(f, "{}@{}", subs[0].0, subs[0].1)?;
                    for sub in &subs[1..] {
                        write!(f, ",{}@{}", sub.0, sub.1)?;
                    }
                }
                f.write_str(")")
            }
            Policy::Thresh(ref thresh) => fmt::Display::fmt(&thresh.display("thresh", true), f),
        }
    }
}

impl<Pk: FromStrKey> str::FromStr for Policy<Pk> {
    type Err = Error;
    fn from_str(s: &str) -> Result<Policy<Pk>, Error> {
        expression::check_valid_chars(s)?;

        let tree = expression::Tree::from_str(s)?;
        let policy: Policy<Pk> = FromTree::from_tree(&tree)?;
        policy.check_timelocks()?;
        Ok(policy)
    }
}

serde_string_impl_pk!(Policy, "a miniscript concrete policy");

impl<Pk: FromStrKey> Policy<Pk> {
    /// Helper function for `from_tree` to parse subexpressions with
    /// names of the form x@y
    fn from_tree_prob(
        top: &expression::Tree,
        allow_prob: bool,
    ) -> Result<(usize, Policy<Pk>), Error> {
        let frag_prob;
        let frag_name;
        let mut name_split = top.name.split('@');
        match (name_split.next(), name_split.next(), name_split.next()) {
            (None, _, _) => {
                frag_prob = 1;
                frag_name = "";
            }
            (Some(name), None, _) => {
                frag_prob = 1;
                frag_name = name;
            }
            (Some(prob), Some(name), None) => {
                if !allow_prob {
                    return Err(Error::AtOutsideOr(top.name.to_owned()));
                }
                frag_prob = expression::parse_num(prob)? as usize;
                frag_name = name;
            }
            (Some(_), Some(_), Some(_)) => {
                return Err(Error::MultiColon(top.name.to_owned()));
            }
        }
        match (frag_name, top.args.len() as u32) {
            ("UNSATISFIABLE", 0) => Ok(Policy::Unsatisfiable),
            ("TRIVIAL", 0) => Ok(Policy::Trivial),
            ("pk", 1) => expression::terminal(&top.args[0], |pk| Pk::from_str(pk).map(Policy::Key)),
            ("after", 1) => expression::terminal(&top.args[0], |x| {
                expression::parse_num(x)
                    .and_then(|x| AbsLockTime::from_consensus(x).map_err(Error::AbsoluteLockTime))
                    .map(Policy::After)
            }),
            ("older", 1) => expression::terminal(&top.args[0], |x| {
                expression::parse_num(x)
                    .and_then(|x| RelLockTime::from_consensus(x).map_err(Error::RelativeLockTime))
                    .map(Policy::Older)
            }),
            ("sha256", 1) => expression::terminal(&top.args[0], |x| {
                <Pk::Sha256 as core::str::FromStr>::from_str(x).map(Policy::Sha256)
            }),
            ("hash256", 1) => expression::terminal(&top.args[0], |x| {
                <Pk::Hash256 as core::str::FromStr>::from_str(x).map(Policy::Hash256)
            }),
            ("ripemd160", 1) => expression::terminal(&top.args[0], |x| {
                <Pk::Ripemd160 as core::str::FromStr>::from_str(x).map(Policy::Ripemd160)
            }),
            ("hash160", 1) => expression::terminal(&top.args[0], |x| {
                <Pk::Hash160 as core::str::FromStr>::from_str(x).map(Policy::Hash160)
            }),
            ("and", _) => {
                if top.args.len() != 2 {
                    return Err(Error::PolicyError(PolicyError::NonBinaryArgAnd));
                }
                let mut subs = Vec::with_capacity(top.args.len());
                for arg in &top.args {
                    subs.push(Arc::new(Policy::from_tree(arg)?));
                }
                Ok(Policy::And(subs))
            }
            ("or", _) => {
                if top.args.len() != 2 {
                    return Err(Error::PolicyError(PolicyError::NonBinaryArgOr));
                }
                let mut subs = Vec::with_capacity(top.args.len());
                for arg in &top.args {
                    subs.push(Policy::from_tree_prob(arg, true)?);
                }
                Ok(Policy::Or(
                    subs.into_iter()
                        .map(|(prob, sub)| (prob, Arc::new(sub)))
                        .collect(),
                ))
            }
            ("thresh", _) => top
                .to_null_threshold()
                .map_err(Error::ParseThreshold)?
                .translate_by_index(|i| Policy::from_tree(&top.args[1 + i]).map(Arc::new))
                .map(Policy::Thresh),
            _ => Err(errstr(top.name)),
        }
        .map(|res| (frag_prob, res))
    }
}

impl<Pk: FromStrKey> expression::FromTree for Policy<Pk> {
    fn from_tree(top: &expression::Tree) -> Result<Policy<Pk>, Error> {
        Policy::from_tree_prob(top, false).map(|(_, result)| result)
    }
}

/// Creates a Huffman Tree from compiled [`Miniscript`] nodes.
#[cfg(feature = "compiler")]
fn with_huffman_tree<Pk: MiniscriptKey>(
    ms: Vec<(OrdF64, Miniscript<Pk, Tap>)>,
) -> Result<TapTree<Pk>, Error> {
    let mut node_weights = BinaryHeap::<(Reverse<OrdF64>, TapTree<Pk>)>::new();
    for (prob, script) in ms {
        node_weights.push((Reverse(prob), TapTree::Leaf(Arc::new(script))));
    }
    if node_weights.is_empty() {
        return Err(errstr("Empty Miniscript compilation"));
    }
    while node_weights.len() > 1 {
        let (p1, s1) = node_weights.pop().expect("len must atleast be two");
        let (p2, s2) = node_weights.pop().expect("len must atleast be two");

        let p = (p1.0).0 + (p2.0).0;
        node_weights.push((Reverse(OrdF64(p)), TapTree::combine(s1, s2)));
    }

    debug_assert!(node_weights.len() == 1);
    let node = node_weights
        .pop()
        .expect("huffman tree algorithm is broken")
        .1;
    Ok(node)
}

/// Enumerates a [`Policy::Thresh(k, ..n..)`] into `n` different thresh's.
///
/// ## Strategy
///
/// `thresh(k, x_1...x_n) := thresh(1, thresh(k, x_2...x_n), thresh(k, x_1x_3...x_n), ...., thresh(k, x_1...x_{n-1}))`
/// by the simple argument that choosing `k` conditions from `n` available conditions might not contain
/// any one of the conditions exclusively.
#[cfg(feature = "compiler")]
fn generate_combination<Pk: MiniscriptKey>(
    thresh: &Threshold<Arc<Policy<Pk>>, 0>,
    prob: f64,
) -> Vec<(f64, Arc<Policy<Pk>>)> {
    debug_assert!(thresh.k() < thresh.n());

    let prob_over_n = prob / thresh.n() as f64;
    let mut ret: Vec<(f64, Arc<Policy<Pk>>)> = vec![];
    for i in 0..thresh.n() {
        let thresh_less_1 = Threshold::from_iter(
            thresh.k(),
            thresh
                .iter()
                .enumerate()
                .filter_map(|(j, sub)| if j != i { Some(Arc::clone(sub)) } else { None }),
        )
        .expect("k is strictly less than n, so (k, n-1) is a valid threshold");
        ret.push((prob_over_n, Arc::new(Policy::Thresh(thresh_less_1))));
    }
    ret
}

impl<'a, Pk: MiniscriptKey> TreeLike for &'a Policy<Pk> {
    fn as_node(&self) -> Tree<Self> {
        use Policy::*;

        match *self {
            Unsatisfiable | Trivial | Key(_) | After(_) | Older(_) | Sha256(_) | Hash256(_)
            | Ripemd160(_) | Hash160(_) => Tree::Nullary,
            And(ref subs) => Tree::Nary(subs.iter().map(Arc::as_ref).collect()),
            Or(ref v) => Tree::Nary(v.iter().map(|(_, p)| p.as_ref()).collect()),
            Thresh(ref thresh) => Tree::Nary(thresh.iter().map(Arc::as_ref).collect()),
        }
    }
}

impl<Pk: MiniscriptKey> TreeLike for Arc<Policy<Pk>> {
    fn as_node(&self) -> Tree<Self> {
        use Policy::*;

        match self.as_ref() {
            Unsatisfiable | Trivial | Key(_) | After(_) | Older(_) | Sha256(_) | Hash256(_)
            | Ripemd160(_) | Hash160(_) => Tree::Nullary,
            And(ref subs) => Tree::Nary(subs.iter().map(Arc::clone).collect()),
            Or(ref v) => Tree::Nary(v.iter().map(|(_, p)| Arc::clone(p)).collect()),
            Thresh(ref thresh) => Tree::Nary(thresh.iter().map(Arc::clone).collect()),
        }
    }
}

#[cfg(all(test, feature = "compiler"))]
mod compiler_tests {
    use core::str::FromStr;

    use super::*;

    #[test]
    fn test_gen_comb() {
        let policies: Vec<Arc<Concrete<String>>> = vec!["pk(A)", "pk(B)", "pk(C)", "pk(D)"]
            .into_iter()
            .map(|st| policy_str!("{}", st))
            .map(Arc::new)
            .collect();
        let thresh = Threshold::new(2, policies).unwrap();

        let combinations = generate_combination(&thresh, 1.0);

        let comb_a: Vec<Policy<String>> = vec![
            policy_str!("pk(B)"),
            policy_str!("pk(C)"),
            policy_str!("pk(D)"),
        ];
        let comb_b: Vec<Policy<String>> = vec![
            policy_str!("pk(A)"),
            policy_str!("pk(C)"),
            policy_str!("pk(D)"),
        ];
        let comb_c: Vec<Policy<String>> = vec![
            policy_str!("pk(A)"),
            policy_str!("pk(B)"),
            policy_str!("pk(D)"),
        ];
        let comb_d: Vec<Policy<String>> = vec![
            policy_str!("pk(A)"),
            policy_str!("pk(B)"),
            policy_str!("pk(C)"),
        ];
        let expected_comb = vec![comb_a, comb_b, comb_c, comb_d]
            .into_iter()
            .map(|sub_pol| {
                let expected_thresh =
                    Threshold::from_iter(2, sub_pol.into_iter().map(Arc::new)).unwrap();
                (0.25, Arc::new(Policy::Thresh(expected_thresh)))
            })
            .collect::<Vec<_>>();
        assert_eq!(combinations, expected_comb);
    }
}

#[cfg(test)]
mod tests {
    use std::str::FromStr;

    use super::*;

    #[test]
    fn for_each_key_count_keys() {
        let liquid_pol = Policy::<String>::from_str(
            "or(and(older(4096),thresh(2,pk(A),pk(B),pk(C))),thresh(11,pk(F1),pk(F2),pk(F3),pk(F4),pk(F5),pk(F6),pk(F7),pk(F8),pk(F9),pk(F10),pk(F11),pk(F12),pk(F13),pk(F14)))").unwrap();
        let mut count = 0;
        assert!(liquid_pol.for_each_key(|_| {
            count += 1;
            true
        }));
        assert_eq!(count, 17);
    }

    #[test]
    fn for_each_key_fails_predicate() {
        let policy =
            Policy::<String>::from_str("or(and(pk(key0),pk(key1)),pk(oddnamedkey))").unwrap();
        assert!(!policy.for_each_key(|k| k.starts_with("key")));
    }

    #[test]
    fn tranaslate_pk() {
        pub struct TestTranslator;
        impl Translator<String, String, ()> for TestTranslator {
            fn pk(&mut self, pk: &String) -> Result<String, ()> {
                let new = format!("NEW-{}", pk);
                Ok(new.to_string())
            }
            fn sha256(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
            fn hash256(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
            fn ripemd160(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
            fn hash160(&mut self, hash: &String) -> Result<String, ()> { Ok(hash.to_string()) }
        }
        let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
        let mut t = TestTranslator;

        let want = Policy::<String>::from_str("or(and(pk(NEW-A),pk(NEW-B)),pk(NEW-C))").unwrap();
        let got = policy
            .translate_pk(&mut t)
            .expect("failed to translate keys");

        assert_eq!(got, want);
    }

    #[test]
    fn translate_unsatisfiable_pk() {
        let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();

        let want = Policy::<String>::from_str("or(and(pk(A),UNSATISFIABLE),pk(C))").unwrap();
        let got = policy.translate_unsatisfiable_pk(&"B".to_string());

        assert_eq!(got, want);
    }

    #[test]
    fn keys() {
        let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();

        let want = vec!["A", "B", "C"];
        let got = policy.keys();

        assert_eq!(got, want);
    }

    #[test]
    #[cfg(feature = "compiler")]
    fn num_tap_leaves() {
        let policy = Policy::<String>::from_str("or(and(pk(A),pk(B)),pk(C))").unwrap();
        assert_eq!(policy.num_tap_leaves(), 2);
    }

    #[test]
    #[should_panic]
    fn check_timelocks() {
        // This implicitly tests the check_timelocks API (has height and time locks).
        let _ = Policy::<String>::from_str("and(after(10),after(500000000))").unwrap();
    }
}