1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
//! A proof is a data structure that proves that a given element is in the accumulator. It is used
//! to validate a transaction. A proof is composed of a list of hashes and a list of integers. The
//! hashes are the hashes need to calculate the root hash for validation. The integers are the position of the
//! element in the accumulator.
//! ## Example
//! ```
//! use std::str::FromStr;
//!
//! use bitcoin_hashes::sha256;
//! use bitcoin_hashes::Hash;
//! use bitcoin_hashes::HashEngine;
//! use rustreexo::accumulator::node_hash::NodeHash;
//! use rustreexo::accumulator::proof::Proof;
//! use rustreexo::accumulator::stump::Stump;
//! let s = Stump::new();
//! // Creates a tree with those values as leaves
//! let test_values: Vec<u8> = vec![0, 1, 2, 3, 4, 5, 6, 7];
//! // Targets are the nodes we intend to prove
//! let targets = vec![0];
//!
//! // The hashes used to prove an element.
//! let mut proof_hashes = Vec::new();
//!
//! proof_hashes.push(
//! NodeHash::from_str("4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a")
//! .unwrap(),
//! );
//! proof_hashes.push(
//! NodeHash::from_str("9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b")
//! .unwrap(),
//! );
//! proof_hashes.push(
//! NodeHash::from_str("29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7")
//! .unwrap(),
//! );
//!
//! // Hashes of the leaves UTXOs we'll add to the accumulator
//! let mut hashes = Vec::new();
//! for i in test_values {
//! let mut engine = sha256::Hash::engine();
//! engine.input(&[i]);
//! hashes.push(sha256::Hash::from_engine(engine).into())
//! }
//! // Add the UTXOs to the accumulator
//! let s = s.modify(&hashes, &vec![], &Proof::default()).unwrap().0;
//! // Create a proof for the targets
//! let p = Proof::new(targets, proof_hashes);
//! // Verify the proof
//! assert!(s.verify(&p, &vec![hashes[0]]).expect("This proof is valid"));
//! ```
use std::collections::HashMap;
use std::io::Read;
use std::io::Write;
#[cfg(feature = "with-serde")]
use serde::Deserialize;
#[cfg(feature = "with-serde")]
use serde::Serialize;
use super::node_hash::NodeHash;
use super::stump::UpdateData;
use super::util::get_proof_positions;
use super::util::read_u64;
use super::util::tree_rows;
use super::util::{self};
#[derive(Clone, Debug, Default, Eq, PartialEq)]
#[cfg_attr(feature = "with-serde", derive(Serialize, Deserialize))]
/// A proof is a collection of hashes and positions. Each target position
/// points to a leaf to be proven. Hashes are all
/// hashes that can't be calculated from the data itself.
/// Proofs are generated elsewhere.
pub struct Proof {
/// Targets are the i'th of leaf locations to delete and they are the bottommost leaves.
/// With the tree below, the Targets can only consist of one of these: 02, 03, 04.
///```!
/// // 06
/// // |-------\
/// // 04 05
/// // |---\ |---\
/// // 02 03
/// ```
pub targets: Vec<u64>,
/// All the nodes in the tree that are needed to hash up to the root of
/// the tree. Here, the root is 06. If Targets are [00, 01], then Proof
/// would be \[05\] as you need 04 and 05 to hash to 06. 04 can be calculated
/// by hashing 00 and 01.
///```!
/// // 06
/// // |-------\
/// // 04 05
/// // |---\ |---\
/// // 00 01 02 03
/// ```
pub hashes: Vec<NodeHash>,
}
// We often need to return the targets paired with hashes, and the proof position.
// Even not using full qualifications, it gets long and complex, and clippy doesn't like
// it. These type alias helps with that.
/// This alias is used when we need to return the nodes and roots for a proof
/// if we are not concerned with deleting those elements.
pub(crate) type NodesAndRootsCurrent = (Vec<(u64, NodeHash)>, Vec<NodeHash>);
/// This is used when we need to return the nodes and roots for a proof
/// if we are concerned with deleting those elements. The difference is that
/// we need to retun the old and updatated roots in the accumulator.
pub(crate) type NodesAndRootsOldNew = (Vec<(u64, NodeHash)>, Vec<(NodeHash, NodeHash)>);
impl Proof {
/// Creates a proof from a vector of target and hashes.
/// `targets` are u64s and indicates the position of the leaves we are
/// trying to prove.
/// `hashes` are of type `NodeHash` and are all hashes we need for computing the roots.
///
/// Assuming a tree with leaf values [0, 1, 2, 3, 4, 5, 6, 7], we should see something like this:
///```!
/// // 14
/// // |-----------------\
/// // 12 13
/// // |---------\ |--------\
/// // 08 09 10 11
/// // |----\ |----\ |----\ |----\
/// // 00 01 02 03 04 05 06 07
/// ```
/// If we are proving `00` (i.e. 00 is our target), then we need 01,
/// 09 and 13's hashes, so we can compute 14 by hashing both siblings
/// in each level (00 and 01, 08 and 09 and 12 and 13). Note that
/// some hashes we can compute by ourselves, and are not present in the
/// proof, in this case 00, 08, 12 and 14.
/// # Example
/// ```
/// use bitcoin_hashes::Hash;
/// use bitcoin_hashes::HashEngine;
/// use rustreexo::accumulator::node_hash::NodeHash;
/// use rustreexo::accumulator::proof::Proof;
/// let targets = vec![0];
///
/// let mut proof_hashes = Vec::new();
/// let targets = vec![0];
/// // For proving 0, we need 01, 09 and 13's hashes. 00, 08, 12 and 14 can be calculated
/// // Fill `proof_hashes` up with all hashes
/// Proof::new(targets, proof_hashes);
/// ```
pub fn new(targets: Vec<u64>, hashes: Vec<NodeHash>) -> Self {
Proof { targets, hashes }
}
/// Public interface for verifying proofs. Returns a result with a bool or an Error
/// True means the proof is true given the current stump, false means the proof is
/// not valid given the current stump.
///# Examples
/// ```
/// use std::str::FromStr;
///
/// use bitcoin_hashes::sha256;
/// use bitcoin_hashes::Hash;
/// use bitcoin_hashes::HashEngine;
/// use rustreexo::accumulator::node_hash::NodeHash;
/// use rustreexo::accumulator::proof::Proof;
/// use rustreexo::accumulator::stump::Stump;
/// let s = Stump::new();
/// // Creates a tree with those values as leaves
/// let test_values: Vec<u8> = vec![0, 1, 2, 3, 4, 5, 6, 7];
/// // Targets are the nodes we intend to prove
/// let targets = vec![0];
///
/// let mut proof_hashes = Vec::new();
/// // This tree will look like this
/// // 14
/// // |-----------------\
/// // 12 13
/// // |---------\ |--------\
/// // 08 09 10 11
/// // |----\ |----\ |----\ |----\
/// // 00 01 02 03 04 05 06 07
/// // For proving 0, we need 01, 09 and 13's hashes. 00, 08, 12 and 14 can be calculated
/// proof_hashes.push(
/// NodeHash::from_str("4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a")
/// .unwrap(),
/// );
/// proof_hashes.push(
/// NodeHash::from_str("9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b")
/// .unwrap(),
/// );
/// proof_hashes.push(
/// NodeHash::from_str("29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7")
/// .unwrap(),
/// );
///
/// let mut hashes = Vec::new();
/// for i in test_values {
/// let mut engine = sha256::Hash::engine();
/// engine.input(&[i]);
/// hashes.push(sha256::Hash::from_engine(engine).into())
/// }
/// let s = s.modify(&hashes, &vec![], &Proof::default()).unwrap().0;
/// let p = Proof::new(targets, proof_hashes);
/// assert!(s.verify(&p, &[hashes[0]]).expect("This proof is valid"));
/// ```
pub fn verify(
&self,
del_hashes: &[NodeHash],
roots: &[NodeHash],
num_leaves: u64,
) -> Result<bool, String> {
if self.targets.is_empty() {
return Ok(true);
}
let mut calculated_roots: std::iter::Peekable<std::vec::IntoIter<NodeHash>> = self
.calculate_hashes(del_hashes, num_leaves)?
.1
.into_iter()
.peekable();
let mut number_matched_roots = 0;
for root in roots.iter().rev() {
if let Some(next_calculated_root) = calculated_roots.peek() {
if *next_calculated_root == *root {
number_matched_roots += 1;
calculated_roots.next();
}
}
}
if calculated_roots.len() != number_matched_roots && calculated_roots.len() != 0 {
return Ok(false);
}
Ok(true)
}
/// Returns the elements needed to prove a subset of targets. For example, a tree with
/// 8 leaves, if we cache `[0, 2, 6, 7]`, and we need to prove `[2, 7]` only, we have to remove
/// elements for 0 and 7. The original proof is `[1, 3, 10]`, and we can compute `[8, 9, 11, 12, 13, 14]`.
/// But for `[2, 7]` we need `[3, 6, 8, 10]`, and compute `[9, 11, 12, 13, 14]`
///```!
/// // 14
/// // |---------------\
/// // 12 13
/// // |------\ |-------\
/// // 8 9 10 11
/// // |---\ |---\ |---\ |---\
/// // 0 1 2 3 4 5 6 7
/// ```
pub fn get_proof_subset(
&self,
del_hashes: &[NodeHash],
new_targets: &[u64],
num_leaves: u64,
) -> Result<Proof, String> {
let forest_rows = tree_rows(num_leaves);
let old_proof_positions = get_proof_positions(&self.targets, num_leaves, forest_rows);
let needed_positions = get_proof_positions(new_targets, num_leaves, forest_rows);
let (intermediate_positions, _) = self.calculate_hashes(del_hashes, num_leaves)?;
let mut old_proof = old_proof_positions
.iter()
.copied()
.zip(self.hashes.iter().copied())
.collect::<HashMap<u64, NodeHash>>();
old_proof.extend(intermediate_positions);
let mut new_proof = Vec::new();
let mut missing_positions = Vec::new();
for pos in needed_positions {
if old_proof.contains_key(&pos) {
new_proof.push((pos, *old_proof.get(&pos).unwrap()));
} else {
missing_positions.push(pos);
}
}
new_proof.sort();
let (_, new_proof): (Vec<u64>, Vec<NodeHash>) = new_proof.into_iter().unzip();
Ok(Proof {
targets: new_targets.to_vec(),
hashes: new_proof,
})
}
/// Serializes the proof into a byte array.
/// The format is (all integers are little endian):
/// - number of targets (u64)
/// - targets (u64)
/// - number of hashes (u64)
/// - hashes (32 bytes)
/// # Example
/// ```
/// use rustreexo::accumulator::node_hash::NodeHash;
/// use rustreexo::accumulator::proof::Proof;
/// use rustreexo::accumulator::stump::Stump;
///
/// let proof = Proof::default();
/// let mut serialized_proof = vec![];
/// proof.serialize(&mut serialized_proof).unwrap();
/// // An empty proof is only 16 bytes of zeros, meaning no targets and no hashes
/// assert_eq!(
/// vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
/// serialized_proof
/// );
/// ```
pub fn serialize<W: Write>(&self, mut writer: W) -> std::io::Result<usize> {
let mut len = 16;
writer.write_all(&self.targets.len().to_le_bytes())?;
for target in &self.targets {
len += 8;
writer.write_all(&target.to_le_bytes())?;
}
writer.write_all(&self.hashes.len().to_le_bytes())?;
for hash in &self.hashes {
len += 32;
writer.write_all(&**hash)?;
}
Ok(len)
}
/// Deserializes a proof from a byte array.
/// # Example
/// ```
/// use std::io::Cursor;
///
/// use rustreexo::accumulator::node_hash::NodeHash;
/// use rustreexo::accumulator::proof::Proof;
/// use rustreexo::accumulator::stump::Stump;
/// let proof = Cursor::new(vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// let deserialized_proof = Proof::deserialize(proof).unwrap();
/// // An empty proof is only 16 bytes of zeros, meaning no targets and no hashes
/// assert_eq!(Proof::default(), deserialized_proof);
/// ```
pub fn deserialize<Source: Read>(mut buf: Source) -> Result<Self, String> {
let targets_len = read_u64(&mut buf)? as usize;
let mut targets = Vec::with_capacity(targets_len);
for _ in 0..targets_len {
targets.push(read_u64(&mut buf).map_err(|_| "Failed to parse target")?);
}
let hashes_len = read_u64(&mut buf)? as usize;
let mut hashes = Vec::with_capacity(hashes_len);
for _ in 0..hashes_len {
let mut hash = [0u8; 32];
buf.read_exact(&mut hash)
.map_err(|_| "Failed to read hash")?;
hashes.push(hash.into());
}
Ok(Proof { targets, hashes })
}
/// Returns how many targets this proof has
pub fn targets(&self) -> usize {
self.targets.len()
}
/// This function computes a set of roots from the proof
///
/// It will compute all roots that contains elements in the proof, by hasing the nodes
/// in the path to the root. This function returns the calculated roots and the hashes
/// that were calculated in the process.
/// This function is used for updating the accumulator **and** verifying proofs. It returns
/// the roots computed from the proof (that should be equal to some roots in the present
/// accumulator) and the hashes for a accumulator where the proof elements are removed.
/// If at least one returned element doesn't exist in the accumulator, the proof is invalid.
pub(crate) fn calculate_hashes_delete(
&self,
del_hashes: &[(NodeHash, NodeHash)],
num_leaves: u64,
) -> Result<NodesAndRootsOldNew, String> {
// Where all the root hashes that we've calculated will go to.
let total_rows = util::tree_rows(num_leaves);
// Where all the parent hashes we've calculated in a given row will go to.
let mut calculated_root_hashes =
Vec::<(NodeHash, NodeHash)>::with_capacity(util::num_roots(num_leaves));
// the positions that should be passed as a proof
let proof_positions = get_proof_positions(&self.targets, num_leaves, total_rows);
// As we calculate nodes upwards, it accumulates here
let mut nodes: Vec<_> = self
.targets
.iter()
.copied()
.zip(del_hashes.to_owned())
.collect();
// add the proof positions to the nodes
nodes.extend(
proof_positions
.iter()
.copied()
.zip(self.hashes.iter().copied().map(|hash| (hash, hash))),
);
// Nodes must be sorted for finding siblings during hashing
nodes.sort();
let mut computed = Vec::with_capacity(nodes.len() * 2);
let mut computed_index = 0;
let mut provided_index = 0;
loop {
let Some((next_pos, (next_hash_old, next_hash_new))) =
Self::get_next(&computed, &nodes, &mut computed_index, &mut provided_index)
else {
break;
};
if util::is_root_position(next_pos, num_leaves, total_rows) {
calculated_root_hashes.push((next_hash_old, next_hash_new));
continue;
}
let sibling = next_pos | 1;
let (sibling_pos, (sibling_hash_old, sibling_hash_new)) =
Self::get_next(&computed, &nodes, &mut computed_index, &mut provided_index)
.ok_or(format!("Missing sibling for {}", next_pos))?;
if sibling_pos != sibling {
return Err(format!("Missing sibling for {}", next_pos));
}
let parent_hash = match (next_hash_new.is_empty(), sibling_hash_new.is_empty()) {
(true, true) => NodeHash::empty(),
(true, false) => sibling_hash_new,
(false, true) => next_hash_new,
(false, false) => NodeHash::parent_hash(&next_hash_new, &sibling_hash_new),
};
let parent = util::parent(next_pos, total_rows);
let old_parent_hash = NodeHash::parent_hash(&next_hash_old, &sibling_hash_old);
computed.push((parent, (old_parent_hash, parent_hash)));
}
// we shouldn't return the hashes in the proof
nodes.extend(computed);
let nodes = nodes
.into_iter()
.map(|(pos, (_, new_hash))| (pos, new_hash))
.collect();
Ok((nodes, calculated_root_hashes))
}
/// This function computes a set of roots from a proof.
///
/// Using the proof, we should be able to calculate a subset of the roots, by hashing the
/// nodes in the path to the root. This function returns the calculated roots and the
/// hashes that were calculated in the process.
/// This differs from `calculate_hashes_delelte` as this one is only used for verifying
/// proofs, it doesn't compute the roots after the deletion, only the roots that are
/// needed for verification (i.e. the current accumulator).
pub(crate) fn calculate_hashes(
&self,
del_hashes: &[NodeHash],
num_leaves: u64,
) -> Result<NodesAndRootsCurrent, String> {
// Where all the root hashes that we've calculated will go to.
let total_rows = util::tree_rows(num_leaves);
// Where all the parent hashes we've calculated in a given row will go to.
let mut calculated_root_hashes =
Vec::<NodeHash>::with_capacity(util::num_roots(num_leaves));
// the positions that should be passed as a proof
let proof_positions = get_proof_positions(&self.targets, num_leaves, total_rows);
// As we calculate nodes upwards, it accumulates here
let mut nodes: Vec<_> = self
.targets
.iter()
.copied()
.zip(del_hashes.to_owned())
.collect();
// add the proof positions to the nodes
nodes.extend(
proof_positions
.iter()
.copied()
.zip(self.hashes.iter().copied()),
);
// Nodes must be sorted for finding siblings during hashing
nodes.sort();
let mut computed = Vec::with_capacity(nodes.len() * 2);
let mut computed_index = 0;
let mut provided_index = 0;
loop {
let Some((next_pos, next_hash)) =
Self::get_next(&computed, &nodes, &mut computed_index, &mut provided_index)
else {
break;
};
if util::is_root_position(next_pos, num_leaves, total_rows) {
calculated_root_hashes.push(next_hash);
continue;
}
let sibling = next_pos | 1;
let (sibling_pos, sibling_hash) =
Self::get_next(&computed, &nodes, &mut computed_index, &mut provided_index)
.ok_or(format!("Missing sibling for {}", next_pos))?;
if sibling_pos != sibling {
return Err(format!("Missing sibling for {}", next_pos));
}
let parent_hash = NodeHash::parent_hash(&next_hash, &sibling_hash);
let parent = util::parent(next_pos, total_rows);
computed.push((parent, parent_hash));
}
// we shouldn't return the hashes in the proof
nodes.extend(computed);
nodes.retain(|(pos, _)| proof_positions.binary_search(pos).is_err());
Ok((nodes, calculated_root_hashes))
}
fn get_next<T: Copy>(
computed: &[(u64, T)],
provided: &[(u64, T)],
computed_pos: &mut usize,
provided_pos: &mut usize,
) -> Option<(u64, T)> {
let last_computed = computed.get(*computed_pos);
let last_provided = provided.get(*provided_pos);
match (last_computed, last_provided) {
(Some((pos1, hashes1)), Some((pos2, hashes2))) => {
if pos1 < pos2 {
*computed_pos += 1;
Some((*pos1, *hashes1))
} else {
*provided_pos += 1;
Some((*pos2, *hashes2))
}
}
(Some(node), None) => {
*computed_pos += 1;
Some(*node)
}
(None, Some(node)) => {
*provided_pos += 1;
Some(*node)
}
(None, None) => None,
}
}
/// Uses the data passed in to update a proof, creating a valid proof for a given
/// set of targets, after an update. This is useful for caching UTXOs. You grab a proof
/// for it once and then keep updating it every block, yielding an always valid proof
/// over those UTXOs.
pub fn update(
self,
cached_hashes: Vec<NodeHash>,
add_hashes: Vec<NodeHash>,
block_targets: Vec<u64>,
remembers: Vec<u64>,
update_data: UpdateData,
) -> Result<(Proof, Vec<NodeHash>), String> {
let (proof_after_deletion, cached_hashes) = self.update_proof_remove(
block_targets,
cached_hashes,
update_data.new_del,
update_data.prev_num_leaves,
)?;
let data_after_addition = proof_after_deletion.update_proof_add(
add_hashes,
cached_hashes,
remembers,
update_data.new_add,
update_data.prev_num_leaves,
update_data.to_destroy,
)?;
Ok(data_after_addition)
}
fn update_proof_add(
self,
adds: Vec<NodeHash>,
cached_del_hashes: Vec<NodeHash>,
remembers: Vec<u64>,
new_nodes: Vec<(u64, NodeHash)>,
before_num_leaves: u64,
to_destroy: Vec<u64>,
) -> Result<(Proof, Vec<NodeHash>), String> {
// Combine the hashes with the targets.
let orig_targets_with_hash: Vec<(u64, NodeHash)> = self
.targets
.iter()
.copied()
.zip(cached_del_hashes)
.collect();
// Attach positions to the proof.
let proof_pos = get_proof_positions(
&self.targets,
before_num_leaves,
util::tree_rows(before_num_leaves),
);
let proof_with_pos = proof_pos.into_iter().zip(self.hashes).collect();
// Remap the positions if we moved up a after the addition row.
let targets_after_remap =
Proof::maybe_remap(before_num_leaves, adds.len() as u64, orig_targets_with_hash);
let mut final_targets = targets_after_remap;
let mut new_nodes_iter = new_nodes.iter();
let mut proof_with_pos =
Proof::maybe_remap(before_num_leaves, adds.len() as u64, proof_with_pos);
let num_leaves = before_num_leaves + (adds.len() as u64);
// Move up positions that need to be moved up due to the empty roots
// being written over.
for node in to_destroy {
final_targets =
Proof::calc_next_positions(&vec![node], &final_targets, num_leaves, true)?;
proof_with_pos =
Proof::calc_next_positions(&vec![node], &proof_with_pos, num_leaves, true)?;
}
// remembers is an index telling what newly created UTXO should be cached
for remember in remembers {
let remember_target: Option<&NodeHash> = adds.get(remember as usize);
if let Some(remember_target) = remember_target {
let node = new_nodes_iter.find(|(_, hash)| *hash == *remember_target);
if let Some((pos, hash)) = node {
final_targets.push((*pos, *hash));
}
}
}
final_targets.sort();
let (new_target_pos, target_hashes): (Vec<_>, Vec<_>) =
final_targets.clone().into_iter().unzip();
// Grab all the new nodes after this add.
let mut needed_proof_positions =
util::get_proof_positions(&new_target_pos, num_leaves, util::tree_rows(num_leaves));
needed_proof_positions.sort();
// We'll use all elements from the old proof, as addition only creates new nodes
// in our proof (except for root destruction). But before using it, we have to
// compute the new positions, as adding new elements may move existing elements a few
// rows up.
let mut new_proof = proof_with_pos;
// Iterates over the needed positions and grab them from new_nodes
// All proof elements must come from the old proof or new_nodes. Old proof elements
// are already in new_proof. Some every missing element must be in new_nodes.
for pos in needed_proof_positions {
if let Some((_, hash)) = new_nodes.iter().find(|(node_pos, _)| pos == *node_pos) {
new_proof.push((pos, *hash));
} else {
// This node must be in either new_nodes or in the old proof, otherwise we can't
// update our proof
if !new_proof.iter().any(|(proof_pos, _)| *proof_pos == pos) {
return Err(format!("Missing position {}", pos));
}
}
}
new_proof.sort();
let (_, hashes): (Vec<u64>, Vec<NodeHash>) = new_proof.into_iter().unzip();
Ok((
Proof {
hashes,
targets: new_target_pos,
},
target_hashes,
))
}
/// maybe_remap remaps the passed in hash and pos if the tree_rows increase after
/// adding the new nodes.
fn maybe_remap(
num_leaves: u64,
num_adds: u64,
positions: Vec<(u64, NodeHash)>,
) -> Vec<(u64, NodeHash)> {
let new_forest_rows = util::tree_rows(num_leaves + num_adds);
let old_forest_rows = util::tree_rows(num_leaves);
let tree_rows = util::tree_rows(num_leaves);
let mut new_proofs = vec![];
if new_forest_rows > old_forest_rows {
for (pos, hash) in positions.iter() {
let row = util::detect_row(*pos, tree_rows);
let old_start_pos = util::start_position_at_row(row, old_forest_rows);
let new_start_pos = util::start_position_at_row(row, new_forest_rows);
let offset = pos - old_start_pos;
let new_pos = offset + new_start_pos;
new_proofs.push((new_pos, *hash));
}
return new_proofs;
}
positions
}
/// update_proof_remove modifies the cached proof with the deletions that happen in the block proof.
/// It updates the necessary proof hashes and un-caches the targets that are being deleted.
fn update_proof_remove(
self,
block_targets: Vec<u64>,
cached_hashes: Vec<NodeHash>,
updated: Vec<(u64, NodeHash)>,
num_leaves: u64,
) -> Result<(Proof, Vec<NodeHash>), String> {
let total_rows = util::tree_rows(num_leaves);
let targets_with_hash: Vec<(u64, NodeHash)> = self
.targets
.iter()
.cloned()
.zip(cached_hashes)
.filter(|(pos, _)| !block_targets.contains(pos))
.collect();
let (targets, _): (Vec<_>, Vec<_>) = targets_with_hash.iter().cloned().unzip();
let proof_positions =
util::get_proof_positions(&self.targets, num_leaves, util::tree_rows(num_leaves));
let old_proof: Vec<_> = proof_positions.iter().zip(self.hashes.iter()).collect();
let mut new_proof = vec![];
// Grab all the positions of the needed proof hashes.
let needed_pos = util::get_proof_positions(&targets, num_leaves, total_rows);
let old_proof_iter = old_proof.iter();
// Loop through old_proofs and only add the needed proof hashes.
for (pos, hash) in old_proof_iter {
// Some positions might not be useful anymore, due to deleted targets
if needed_pos.contains(*pos) {
// Grab all positions from the old proof, if it changed, then takes the new
// hash from `updated`
if let Some((_, updated_hash)) =
updated.iter().find(|(updated_pos, _)| *pos == updated_pos)
{
if !updated_hash.is_empty() {
new_proof.push((**pos, *updated_hash));
}
} else {
// If it didn't change, take the value from the old proof
if !hash.is_empty() {
new_proof.push((**pos, **hash));
}
}
}
}
let missing_positions = needed_pos
.into_iter()
.filter(|pos| !proof_positions.contains(pos) && !block_targets.contains(pos));
for missing in missing_positions {
if let Some((_, hash)) = updated
.iter()
.find(|(updated_pos, _)| missing == *updated_pos)
{
if !hash.is_empty() {
new_proof.push((missing, *hash));
}
}
}
// We need to remap all proof hashes and sort then, otherwise our hash will be wrong.
// This happens because deletion moves nodes upwards, some of this nodes may be a proof
// element. If so we move it to its new position. After that the vector is probably unsorted, so we sort it.
let mut proof_elements: Vec<_> =
Proof::calc_next_positions(&block_targets, &new_proof, num_leaves, true)?;
proof_elements.sort();
// Grab the hashes for the proof
let (_, hashes): (Vec<u64>, Vec<NodeHash>) = proof_elements.into_iter().unzip();
// Gets all proof targets, but with their new positions after delete
let (targets, target_hashes) =
Proof::calc_next_positions(&block_targets, &targets_with_hash, num_leaves, true)?
.into_iter()
.unzip();
Ok((Proof { hashes, targets }, target_hashes))
}
fn calc_next_positions(
block_targets: &Vec<u64>,
old_positions: &Vec<(u64, NodeHash)>,
num_leaves: u64,
append_roots: bool,
) -> Result<Vec<(u64, NodeHash)>, String> {
let total_rows = util::tree_rows(num_leaves);
let mut new_positions = vec![];
let block_targets = util::detwin(block_targets.to_owned(), total_rows);
for (position, hash) in old_positions {
if hash.is_empty() {
continue;
}
let mut next_pos = *position;
for target in block_targets.iter() {
if util::is_root_position(next_pos, num_leaves, total_rows) {
break;
}
// If these positions are in different subtrees, continue.
let (sub_tree, _, _) = util::detect_offset(*target, num_leaves);
let (sub_tree1, _, _) = util::detect_offset(next_pos, num_leaves);
if sub_tree != sub_tree1 {
continue;
}
if util::is_ancestor(util::parent(*target, total_rows), next_pos, total_rows)? {
next_pos = util::calc_next_pos(next_pos, *target, total_rows)?;
}
}
if append_roots || !util::is_root_position(next_pos, num_leaves, total_rows) {
new_positions.push((next_pos, *hash));
}
}
new_positions.sort();
Ok(new_positions)
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use serde::Deserialize;
use super::Proof;
use crate::accumulator::node_hash::NodeHash;
use crate::accumulator::stump::Stump;
use crate::accumulator::util::hash_from_u8;
#[derive(Deserialize)]
struct TestCase {
numleaves: usize,
roots: Vec<String>,
targets: Vec<u64>,
target_preimages: Vec<u8>,
proofhashes: Vec<String>,
expected: bool,
}
/// This test checks whether our update proof works for different scenarios. We start
/// with a (valid) cached proof, then we receive `blocks`, like we would in normal Bitcoin
/// but for this test, block is just random data. For each block we update our Stump and
/// our proof as well, after that, our proof **must** still be valid for the latest Stump.
///
/// Fix-me: Using derive for deserialize, when also using NodeHash leads to an odd
/// error that can't be easily fixed. Even bumping version doesn't appear to help.
/// Deriving hashes directly reduces the amount of boilerplate code used, and makes everything
/// more clearer, hence, it's preferable.
#[test]
fn test_update_proof() {
#[derive(Debug, Deserialize)]
struct JsonProof {
targets: Vec<u64>,
hashes: Vec<String>,
}
#[derive(Debug, Deserialize)]
struct UpdatedData {
/// The newly created utxo to be added to our accumulator
adds: Vec<u64>,
/// The proof for all destroyed utxos
proof: JsonProof,
/// The hash of all destroyed utxos
del_hashes: Vec<String>,
}
#[derive(Debug, Deserialize)]
struct TestData {
/// Blocks contains new utxos and utxos that are being deleted
update: UpdatedData,
/// The proof we have for our wallet's utxos
cached_proof: JsonProof,
/// A initial set of roots, may be empty for starting with an empty stump
initial_roots: Vec<String>,
/// The number of leaves in the initial Stump
initial_leaves: u64,
/// The hash of all wallet's utxo
cached_hashes: Vec<String>,
/// The indexes of all the new utxos to cache
remembers: Vec<u64>,
/// After we update our stump, which roots we expect?
expected_roots: Vec<String>,
/// After we update the proof, the proof's target should be this
expected_targets: Vec<u64>,
/// After we update the proof, the cached hashes should be this
expected_cached_hashes: Vec<String>,
}
let contents = std::fs::read_to_string("test_values/cached_proof_tests.json")
.expect("Something went wrong reading the file");
let values: Vec<TestData> =
serde_json::from_str(contents.as_str()).expect("JSON deserialization error");
for case_values in values {
let proof_hashes = case_values
.cached_proof
.hashes
.iter()
.map(|val| NodeHash::from_str(val).unwrap())
.collect();
let cached_hashes: Vec<_> = case_values
.cached_hashes
.iter()
.map(|val| NodeHash::from_str(val).unwrap())
.collect();
let cached_proof = Proof::new(case_values.cached_proof.targets, proof_hashes);
let roots = case_values
.initial_roots
.into_iter()
.map(|hash| NodeHash::from_str(&hash).unwrap())
.collect();
let stump = Stump {
leaves: case_values.initial_leaves,
roots,
};
let utxos = case_values
.update
.adds
.iter()
.map(|preimage| hash_from_u8(*preimage as u8))
.collect::<Vec<_>>();
let del_hashes = case_values
.update
.del_hashes
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect::<Vec<_>>();
let block_proof_hashes = case_values
.update
.proof
.hashes
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect::<Vec<_>>();
let block_proof =
Proof::new(case_values.update.proof.targets.clone(), block_proof_hashes);
let (stump, updated) = stump.modify(&utxos, &del_hashes, &block_proof).unwrap();
let (cached_proof, cached_hashes) = cached_proof
.update(
cached_hashes.clone(),
utxos,
case_values.update.proof.targets,
case_values.remembers.clone(),
updated.clone(),
)
.unwrap();
let res = stump.verify(&cached_proof, &cached_hashes);
let expected_roots: Vec<_> = case_values
.expected_roots
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let expected_cached_hashes: Vec<_> = case_values
.expected_cached_hashes
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
assert_eq!(res, Ok(true));
assert_eq!(cached_proof.targets, case_values.expected_targets);
assert_eq!(stump.roots, expected_roots);
assert_eq!(cached_hashes, expected_cached_hashes);
}
}
#[test]
fn test_get_next() {
use super::Proof;
let computed = vec![(1, NodeHash::empty()), (3, NodeHash::empty())];
let provided = vec![(2, NodeHash::empty()), (4, NodeHash::empty())];
let mut computed_pos = 0;
let mut provided_pos = 0;
assert_eq!(
Proof::get_next(&computed, &provided, &mut computed_pos, &mut provided_pos),
Some((1, NodeHash::empty()))
);
assert_eq!(
Proof::get_next(&computed, &provided, &mut computed_pos, &mut provided_pos),
Some((2, NodeHash::empty()))
);
assert_eq!(
Proof::get_next(&computed, &provided, &mut computed_pos, &mut provided_pos),
Some((3, NodeHash::empty()))
);
assert_eq!(
Proof::get_next(&computed, &provided, &mut computed_pos, &mut provided_pos),
Some((4, NodeHash::empty()))
);
assert_eq!(
Proof::get_next(&computed, &provided, &mut computed_pos, &mut provided_pos),
None
);
}
#[test]
fn test_calc_next_positions() {
use super::Proof;
#[derive(Clone)]
struct Test {
name: &'static str,
block_targets: Vec<u64>,
old_positions: Vec<(u64, NodeHash)>,
num_leaves: u64,
num_adds: u64,
append_roots: bool,
expected: Vec<(u64, NodeHash)>,
}
let tests = vec![Test {
name: "One empty root deleted",
block_targets: vec![26],
old_positions: vec![
(
1,
NodeHash::from_str(
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
)
.unwrap(),
),
(
13,
NodeHash::from_str(
"9d1e0e2d9459d06523ad13e28a4093c2316baafe7aec5b25f30eba2e113599c4",
)
.unwrap(),
),
(
17,
NodeHash::from_str(
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
)
.unwrap(),
),
(
25,
NodeHash::from_str(
"29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7",
)
.unwrap(),
),
],
num_leaves: 14,
num_adds: 2,
append_roots: false,
expected: (vec![
(
1,
NodeHash::from_str(
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
)
.unwrap(),
),
(
17,
NodeHash::from_str(
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
)
.unwrap(),
),
(
21,
NodeHash::from_str(
"9d1e0e2d9459d06523ad13e28a4093c2316baafe7aec5b25f30eba2e113599c4",
)
.unwrap(),
),
(
25,
NodeHash::from_str(
"29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7",
)
.unwrap(),
),
]),
}];
for test in tests {
let res = Proof::calc_next_positions(
&test.block_targets,
&test.old_positions,
test.num_leaves + test.num_adds,
test.append_roots,
)
.unwrap();
assert_eq!(res, test.expected, "testcase: \"{}\" fail", test.name);
}
}
#[test]
fn test_update_proof_delete() {
let preimages = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
let hashes = preimages.into_iter().map(hash_from_u8).collect::<Vec<_>>();
let (stump, _) = Stump::new()
.modify(&hashes, &[], &Proof::default())
.unwrap();
let proof_hashes = vec![
"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
"084fed08b978af4d7d196a7446a86b58009e636b611db16211b65a9aadff29c5",
"ca358758f6d27e6cf45272937977a748fd88391db679ceda7dc7bf1f005ee879",
"9eec588c41d87b16b0ee226cb38da3864f9537632321d8be855a73d5616dcc73",
];
let proof_hashes = proof_hashes
.into_iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let cached_proof_hashes = [
"67586e98fad27da0b9968bc039a1ef34c939b9b8e523a8bef89d478608c5ecf6",
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
"9eec588c41d87b16b0ee226cb38da3864f9537632321d8be855a73d5616dcc73",
];
let cached_proof_hashes = cached_proof_hashes
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let cached_proof = Proof::new(vec![0, 1, 7], cached_proof_hashes);
let proof = Proof::new(vec![1, 2, 6], proof_hashes);
let (stump, modified) = stump
.modify(
&[],
&[hash_from_u8(1), hash_from_u8(2), hash_from_u8(6)],
&proof,
)
.unwrap();
let (new_proof, _) = cached_proof
.update_proof_remove(
vec![1, 2, 6],
vec![hash_from_u8(0), hash_from_u8(1), hash_from_u8(7)],
modified.new_del,
10,
)
.unwrap();
let res = stump.verify(&new_proof, &[hash_from_u8(0), hash_from_u8(7)]);
assert_eq!(res, Ok(true));
}
#[test]
fn test_calculate_hashes() {
// Tests if the calculated roots and nodes are correct.
// The values we use to get some hashes
let preimages = vec![0, 1, 2, 3, 4, 5, 6, 7];
let hashes = preimages.into_iter().map(hash_from_u8).collect::<Vec<_>>();
// Create a new stump with 8 leaves and 1 root
let s = Stump::new()
.modify(&hashes, &[], &Proof::default())
.expect("This stump is valid")
.0;
// Nodes that will be deleted
let del_hashes = vec![hashes[0], hashes[2], hashes[4], hashes[6]];
let proof = vec![
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
"084fed08b978af4d7d196a7446a86b58009e636b611db16211b65a9aadff29c5",
"e77b9a9ae9e30b0dbdb6f510a264ef9de781501d7b6b92ae89eb059c5ab743db",
"ca358758f6d27e6cf45272937977a748fd88391db679ceda7dc7bf1f005ee879",
];
let proof_hashes = proof
.into_iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let p = Proof::new(vec![0, 2, 4, 6], proof_hashes);
// We should get those computed nodes...
let expected_hashes = [
"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
"dbc1b4c900ffe48d575b5da5c638040125f65db0fe3e24494b76ea986457d986",
"e52d9c508c502347344d8c07ad91cbd6068afc75ff6292f062a09ca381c89e71",
"67586e98fad27da0b9968bc039a1ef34c939b9b8e523a8bef89d478608c5ecf6",
"02242b37d8e851f1e86f46790298c7097df06893d6226b7c1453c213e91717de",
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
"9eec588c41d87b16b0ee226cb38da3864f9537632321d8be855a73d5616dcc73",
"34028bbc87000c39476cdc60cf80ca32d579b3a0e2d3f80e0ad8c3739a01aa91",
"df46b17be5f66f0750a4b3efa26d4679db170a72d41eb56c3e4ff75a58c65386",
"29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7",
"b151a956139bb821d4effa34ea95c17560e0135d1e4661fc23cedc3af49dac42",
];
// ... at these positions ...
let expected_pos = [0, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14];
// ... leading to this root
let expected_roots = ["b151a956139bb821d4effa34ea95c17560e0135d1e4661fc23cedc3af49dac42"];
let expected_roots: Vec<_> = expected_roots
.iter()
.map(|root| NodeHash::from_str(root).unwrap())
.collect();
let mut expected_computed = expected_hashes
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.zip(&expected_pos);
let calculated = p.calculate_hashes(&del_hashes, s.leaves);
// We don't expect any errors from this simple test
assert!(calculated.is_ok());
let (nodes, roots) = calculated.unwrap();
// Make sure we got the expect roots
assert_eq!(roots, expected_roots);
// Did we compute all expected nodes?
assert_eq!(nodes.len(), expected_computed.len());
// For each calculated position, check if the position and hashes are as expected
for (pos, hash) in nodes {
if let Some((expected_hash, expected_pos)) = expected_computed.next() {
assert_eq!(pos, *expected_pos as u64);
assert_eq!(hash, expected_hash);
} else {
panic!()
}
}
}
#[test]
fn test_calculate_hashes_delete() {
let preimages = vec![0, 1, 2, 3, 4, 5, 6, 7];
let hashes = preimages.into_iter().map(hash_from_u8).collect::<Vec<_>>();
let del_hashes = vec![hashes[0]];
let proof = vec![
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
"29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7",
];
let proof_hashes = proof
.into_iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let p = Proof::new(vec![0], proof_hashes);
let del_hashes = del_hashes
.into_iter()
.map(|hash| (hash, NodeHash::empty()))
.collect::<Vec<_>>();
let (computed, roots) = p.calculate_hashes_delete(&del_hashes, 8).unwrap();
let expected_root_old =
NodeHash::from_str("b151a956139bb821d4effa34ea95c17560e0135d1e4661fc23cedc3af49dac42")
.unwrap();
let expected_root_new =
NodeHash::from_str("726fdd3b432cc59e68487d126e70f0db74a236267f8daeae30b31839a4e7ebed")
.unwrap();
let computed_positions = [0_u64, 1, 9, 13, 8, 12, 14].to_vec();
let computed_hashes = [
"0000000000000000000000000000000000000000000000000000000000000000",
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
"9576f4ade6e9bc3a6458b506ce3e4e890df29cb14cb5d3d887672aef55647a2b",
"29590a14c1b09384b94a2c0e94bf821ca75b62eacebc47893397ca88e3bbcbd7",
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
"2b77298feac78ab51bc5079099a074c6d789bd350442f5079fcba2b3402694e5",
"726fdd3b432cc59e68487d126e70f0db74a236267f8daeae30b31839a4e7ebed",
]
.iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect::<Vec<_>>();
let expected_computed: Vec<_> = computed_positions
.into_iter()
.zip(computed_hashes)
.collect();
assert_eq!(roots, vec![(expected_root_old, expected_root_new)]);
assert_eq!(computed, expected_computed);
}
#[test]
fn test_serialize_rtt() {
// Tests if the serialized proof can be deserialized again
let p = Proof::new(vec![0, 2, 4, 6], vec![]);
let mut serialized = vec![];
p.serialize(&mut serialized).unwrap();
let deserialized = Proof::deserialize(&mut serialized.as_slice()).unwrap();
assert_eq!(p, deserialized);
}
#[test]
fn test_get_proof_subset() {
// Tests if the calculated roots and nodes are correct.
// The values we use to get some hashes
let preimages = vec![0, 1, 2, 3, 4, 5, 6, 7];
let hashes = preimages.into_iter().map(hash_from_u8).collect::<Vec<_>>();
// Create a new stump with 8 leaves and 1 root
let s = Stump::new()
.modify(&hashes, &[], &Proof::default())
.expect("This stump is valid")
.0;
// Nodes that will be deleted
let del_hashes = vec![hashes[0], hashes[2], hashes[4], hashes[6]];
let proof = vec![
"4bf5122f344554c53bde2ebb8cd2b7e3d1600ad631c385a5d7cce23c7785459a",
"084fed08b978af4d7d196a7446a86b58009e636b611db16211b65a9aadff29c5",
"e77b9a9ae9e30b0dbdb6f510a264ef9de781501d7b6b92ae89eb059c5ab743db",
"ca358758f6d27e6cf45272937977a748fd88391db679ceda7dc7bf1f005ee879",
];
let proof_hashes = proof
.into_iter()
.map(|hash| NodeHash::from_str(hash).unwrap())
.collect();
let p = Proof::new(vec![0, 2, 4, 6], proof_hashes);
let subset = p.get_proof_subset(&del_hashes, &[0], s.leaves).unwrap();
assert_eq!(s.verify(&subset, &[del_hashes[0]]), Ok(true));
assert_eq!(s.verify(&subset, &[del_hashes[2]]), Ok(false));
}
#[test]
#[cfg(feature = "with-serde")]
fn test_serde_rtt() {
// This proof is invalid, but don't care for this test
let proof = Proof::new(vec![0, 1], vec![hash_from_u8(0), hash_from_u8(1)]);
let serialized = serde_json::to_string(&proof).expect("Serialization failed");
let deserialized: Proof =
serde_json::from_str(&serialized).expect("Deserialization failed");
assert_eq!(proof, deserialized);
}
fn run_single_case(case: &serde_json::Value) {
let case = serde_json::from_value::<TestCase>(case.clone()).expect("Invalid test case");
let roots = case
.roots
.into_iter()
.map(|root| NodeHash::from_str(root.as_str()).expect("Test case hash is valid"))
.collect();
let s = Stump {
leaves: case.numleaves as u64,
roots,
};
let targets = case.targets;
let del_hashes = case
.target_preimages
.into_iter()
.map(hash_from_u8)
.collect::<Vec<_>>();
let proof_hashes = case
.proofhashes
.into_iter()
.map(|hash| NodeHash::from_str(hash.as_str()).expect("Test case hash is valid"))
.collect();
let p = Proof::new(targets, proof_hashes);
let expected = case.expected;
let res = s.verify(&p, &del_hashes);
assert!(Ok(expected) == res);
// Test getting proof subset (only if the original proof is valid)
if expected {
let (subset, _) = p.targets.split_at(p.targets() / 2);
let proof = p.get_proof_subset(&del_hashes, subset, s.leaves).unwrap();
let set_hashes = subset
.iter()
.map(|preimage| hash_from_u8(*preimage as u8))
.collect::<Vec<NodeHash>>();
assert_eq!(s.verify(&proof, &set_hashes), Ok(true));
}
}
#[test]
fn test_proof_verify() {
let contents = std::fs::read_to_string("test_values/test_cases.json")
.expect("Something went wrong reading the file");
let values: serde_json::Value =
serde_json::from_str(contents.as_str()).expect("JSON deserialization error");
let tests = values["proof_tests"].as_array().unwrap();
for test in tests {
run_single_case(test);
}
}
}
#[cfg(bench)]
mod bench {
extern crate test;
use test::Bencher;
use crate::accumulator::proof::Proof;
use crate::accumulator::stump::Stump;
use crate::accumulator::util::hash_from_u8;
#[bench]
fn bench_calculate_hashes(bencher: &mut Bencher) {
let preimages = 0..255_u8;
let utxos = preimages
.into_iter()
.map(|preimage| hash_from_u8(preimage))
.collect::<Vec<_>>();
let (stump, modified) = Stump::new().modify(&utxos, &[], &Proof::default()).unwrap();
let proof = Proof::default();
let (proof, cached_hashes) = proof
.update(
vec![],
utxos.clone(),
vec![],
(0..128).into_iter().collect(),
modified,
)
.unwrap();
bencher.iter(|| proof.calculate_hashes(&cached_hashes, stump.leaves))
}
#[bench]
fn bench_proof_update(bencher: &mut Bencher) {
let preimages = [0_u8, 1, 2, 3, 4, 5];
let utxos = preimages
.iter()
.map(|&preimage| hash_from_u8(preimage))
.collect::<Vec<_>>();
let (s, modified) = Stump::new().modify(&utxos, &[], &Proof::default()).unwrap();
let proof = Proof::default();
let (proof, cached_hashes) = proof
.update(vec![], utxos.clone(), vec![], vec![0, 3, 5], modified)
.unwrap();
let preimages = [6, 7, 8, 9, 10, 11, 12, 13, 14];
let utxos = preimages
.iter()
.map(|&preimage| hash_from_u8(preimage))
.collect::<Vec<_>>();
let (_, modified) = s.modify(&utxos, &cached_hashes, &proof).unwrap();
bencher.iter(move || {
proof
.clone()
.update(
cached_hashes.clone(),
utxos.clone(),
vec![0, 3, 5],
vec![1, 2, 3, 4, 5, 6, 7],
modified.clone(),
)
.unwrap();
})
}
}