1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// SPDX-License-Identifier: CC0-1.0

use crate::blockdata::opcodes::{self, Opcode};
use crate::blockdata::script::{read_uint_iter, Error, PushBytes, Script, ScriptBuf, UintError};

/// A "parsed opcode" which allows iterating over a [`Script`] in a more sensible way.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum Instruction<'a> {
    /// Push a bunch of data.
    PushBytes(&'a PushBytes),
    /// Some non-push opcode.
    Op(Opcode),
}

impl<'a> Instruction<'a> {
    /// Returns the opcode if the instruction is not a data push.
    pub fn opcode(&self) -> Option<Opcode> {
        match self {
            Instruction::Op(op) => Some(*op),
            Instruction::PushBytes(_) => None,
        }
    }

    /// Returns the pushed bytes if the instruction is a data push.
    pub fn push_bytes(&self) -> Option<&PushBytes> {
        match self {
            Instruction::Op(_) => None,
            Instruction::PushBytes(bytes) => Some(bytes),
        }
    }

    /// Returns the number interpretted by the script parser
    /// if it can be coerced into a number.
    ///
    /// This does not require the script num to be minimal.
    pub fn script_num(&self) -> Option<i64> {
        match self {
            Instruction::Op(op) => {
                let v = op.to_u8();
                match v {
                    // OP_PUSHNUM_1 ..= OP_PUSHNUM_16
                    0x51..=0x60 => Some(v as i64 - 0x50),
                    // OP_PUSHNUM_NEG1
                    0x4f => Some(-1),
                    _ => None,
                }
            }
            Instruction::PushBytes(bytes) => {
                match super::read_scriptint_non_minimal(bytes.as_bytes()) {
                    Ok(v) => Some(v),
                    _ => None,
                }
            }
        }
    }

    /// Returns the number of bytes required to encode the instruction in script.
    pub(super) fn script_serialized_len(&self) -> usize {
        match self {
            Instruction::Op(_) => 1,
            Instruction::PushBytes(bytes) => ScriptBuf::reserved_len_for_slice(bytes.len()),
        }
    }
}

/// Iterator over a script returning parsed opcodes.
#[derive(Debug, Clone)]
pub struct Instructions<'a> {
    pub(crate) data: core::slice::Iter<'a, u8>,
    pub(crate) enforce_minimal: bool,
}

impl<'a> Instructions<'a> {
    /// Views the remaining script as a slice.
    ///
    /// This is analogous to what [`core::str::Chars::as_str`] does.
    pub fn as_script(&self) -> &'a Script { Script::from_bytes(self.data.as_slice()) }

    /// Sets the iterator to end so that it won't iterate any longer.
    pub(super) fn kill(&mut self) {
        let len = self.data.len();
        self.data.nth(len.max(1) - 1);
    }

    /// Takes a `len` bytes long slice from iterator and returns it, advancing the iterator.
    ///
    /// If the iterator is not long enough [`Error::EarlyEndOfScript`] is returned and the iterator
    /// is killed to avoid returning an infinite stream of errors.
    pub(super) fn take_slice_or_kill(&mut self, len: u32) -> Result<&'a PushBytes, Error> {
        let len = len as usize;
        if self.data.len() >= len {
            let slice = &self.data.as_slice()[..len];
            if len > 0 {
                self.data.nth(len - 1);
            }

            Ok(slice.try_into().expect("len was created from u32, so can't happen"))
        } else {
            self.kill();
            Err(Error::EarlyEndOfScript)
        }
    }

    pub(super) fn next_push_data_len(
        &mut self,
        len: PushDataLenLen,
        min_push_len: usize,
    ) -> Option<Result<Instruction<'a>, Error>> {
        let n = match read_uint_iter(&mut self.data, len as usize) {
            Ok(n) => n,
            // We do exhaustive matching to not forget to handle new variants if we extend
            // `UintError` type.
            // Overflow actually means early end of script (script is definitely shorter
            // than `usize::MAX`)
            Err(UintError::EarlyEndOfScript) | Err(UintError::NumericOverflow) => {
                self.kill();
                return Some(Err(Error::EarlyEndOfScript));
            }
        };
        if self.enforce_minimal && n < min_push_len {
            self.kill();
            return Some(Err(Error::NonMinimalPush));
        }
        let result = n
            .try_into()
            .map_err(|_| Error::NumericOverflow)
            .and_then(|n| self.take_slice_or_kill(n))
            .map(Instruction::PushBytes);
        Some(result)
    }
}

/// Allowed length of push data length.
///
/// This makes it easier to prove correctness of `next_push_data_len`.
pub(super) enum PushDataLenLen {
    One = 1,
    Two = 2,
    Four = 4,
}

impl<'a> Iterator for Instructions<'a> {
    type Item = Result<Instruction<'a>, Error>;

    fn next(&mut self) -> Option<Result<Instruction<'a>, Error>> {
        let &byte = self.data.next()?;

        // classify parameter does not really matter here since we are only using
        // it for pushes and nums
        match Opcode::from(byte).classify(opcodes::ClassifyContext::Legacy) {
            opcodes::Class::PushBytes(n) => {
                // make sure safety argument holds across refactorings
                let n: u32 = n;

                let op_byte = self.data.as_slice().first();
                match (self.enforce_minimal, op_byte, n) {
                    (true, Some(&op_byte), 1)
                        if op_byte == 0x81 || (op_byte > 0 && op_byte <= 16) =>
                    {
                        self.kill();
                        Some(Err(Error::NonMinimalPush))
                    }
                    (_, None, 0) => {
                        // the iterator is already empty, may as well use this information to avoid
                        // whole take_slice_or_kill function
                        Some(Ok(Instruction::PushBytes(PushBytes::empty())))
                    }
                    _ => Some(self.take_slice_or_kill(n).map(Instruction::PushBytes)),
                }
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA1) =>
                self.next_push_data_len(PushDataLenLen::One, 76),
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA2) =>
                self.next_push_data_len(PushDataLenLen::Two, 0x100),
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA4) =>
                self.next_push_data_len(PushDataLenLen::Four, 0x10000),
            // Everything else we can push right through
            _ => Some(Ok(Instruction::Op(Opcode::from(byte)))),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.data.len() == 0 {
            (0, Some(0))
        } else {
            // There will not be more instructions than bytes
            (1, Some(self.data.len()))
        }
    }
}

impl<'a> core::iter::FusedIterator for Instructions<'a> {}

/// Iterator over script instructions with their positions.
///
/// The returned indices can be used for slicing [`Script`] [safely](Script#slicing-safety).
///
/// This is analogous to [`core::str::CharIndices`].
#[derive(Debug, Clone)]
pub struct InstructionIndices<'a> {
    instructions: Instructions<'a>,
    pos: usize,
}

impl<'a> InstructionIndices<'a> {
    /// Views the remaining script as a slice.
    ///
    /// This is analogous to what [`core::str::Chars::as_str`] does.
    #[inline]
    pub fn as_script(&self) -> &'a Script { self.instructions.as_script() }

    /// Creates `Self` setting `pos` to 0.
    pub(super) fn from_instructions(instructions: Instructions<'a>) -> Self {
        InstructionIndices { instructions, pos: 0 }
    }

    pub(super) fn remaining_bytes(&self) -> usize { self.instructions.as_script().len() }

    /// Modifies the iterator using `next_fn` returning the next item.
    ///
    /// This generically computes the new position and maps the value to be returned from iterator
    /// method.
    pub(super) fn next_with<F: FnOnce(&mut Self) -> Option<Result<Instruction<'a>, Error>>>(
        &mut self,
        next_fn: F,
    ) -> Option<<Self as Iterator>::Item> {
        let prev_remaining = self.remaining_bytes();
        let prev_pos = self.pos;
        let instruction = next_fn(self)?;
        // No underflow: there must be less remaining bytes now than previously
        let consumed = prev_remaining - self.remaining_bytes();
        // No overflow: sum will never exceed slice length which itself can't exceed `usize`
        self.pos += consumed;
        Some(instruction.map(move |instruction| (prev_pos, instruction)))
    }
}

impl<'a> Iterator for InstructionIndices<'a> {
    /// The `usize` in the tuple represents index at which the returned `Instruction` is located.
    type Item = Result<(usize, Instruction<'a>), Error>;

    fn next(&mut self) -> Option<Self::Item> { self.next_with(|this| this.instructions.next()) }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.instructions.size_hint() }

    // the override avoids computing pos multiple times
    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.next_with(|this| this.instructions.nth(n))
    }
}

impl core::iter::FusedIterator for InstructionIndices<'_> {}