1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// SPDX-License-Identifier: CC0-1.0
//
// This code was translated from merkleblock.h, merkleblock.cpp and pmt_tests.cpp
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// SPDX-License-Identifier: MIT

//! Merkle Block and Partial Merkle Tree.
//!
//! Support proofs that transaction(s) belong to a block.
//!
//! # Examples
//!
//! ```rust
//! use bitcoin::hash_types::Txid;
//! use bitcoin::hex::FromHex;
//! use bitcoin::{Block, MerkleBlock};
//!
//! // Get the proof from a bitcoind by running in the terminal:
//! // $ TXID="5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2"
//! // $ bitcoin-cli gettxoutproof [\"$TXID\"]
//! let mb_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad27b913719\
//!     0000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33a5914ce6ed5b\
//!     1b01e32f570200000002252bf9d75c4f481ebb6278d708257d1f12beb6dd30301d26c623f789b2ba6fc0e2d3\
//!     2adb5f8ca820731dff234a84e78ec30bce4ec69dbd562d0b2b8266bf4e5a0105").unwrap();
//! let mb: MerkleBlock = bitcoin::consensus::deserialize(&mb_bytes).unwrap();
//!
//! // Authenticate and extract matched transaction ids
//! let mut matches: Vec<Txid> = vec![];
//! let mut index: Vec<u32> = vec![];
//! assert!(mb.extract_matches(&mut matches, &mut index).is_ok());
//! assert_eq!(1, matches.len());
//! assert_eq!(
//!     "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2".parse::<Txid>().unwrap(),
//!     matches[0]
//! );
//! assert_eq!(1, index.len());
//! assert_eq!(1, index[0]);
//! ```

use core::fmt;

use hashes::Hash;
use io::{Read, Write};

use self::MerkleBlockError::*;
use crate::blockdata::block::{self, Block, TxMerkleNode};
use crate::blockdata::transaction::{Transaction, Txid};
use crate::blockdata::weight::Weight;
use crate::consensus::encode::{self, Decodable, Encodable, MAX_VEC_SIZE};
use crate::prelude::*;

/// Data structure that represents a block header paired to a partial merkle tree.
///
/// NOTE: This assumes that the given Block has *at least* 1 transaction. If the Block has 0 txs,
/// it will hit an assertion.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct MerkleBlock {
    /// The block header
    pub header: block::Header,
    /// Transactions making up a partial merkle tree
    pub txn: PartialMerkleTree,
}

impl MerkleBlock {
    /// Create a MerkleBlock from a block, that contains proofs for specific txids.
    ///
    /// The `block` is a full block containing the header and transactions and `match_txids` is a
    /// function that returns true for the ids that should be included in the partial merkle tree.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use bitcoin::hash_types::Txid;
    /// use bitcoin::hex::FromHex;
    /// use bitcoin::{Block, MerkleBlock};
    ///
    /// // Block 80000
    /// let block_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad2\
    ///     7b9137190000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33\
    ///     a5914ce6ed5b1b01e32f5702010000000100000000000000000000000000000000000000000000000000\
    ///     00000000000000ffffffff0704e6ed5b1b014effffffff0100f2052a01000000434104b68a50eaa0287e\
    ///     ff855189f949c1c6e5f58b37c88231373d8a59809cbae83059cc6469d65c665ccfd1cfeb75c6e8e19413\
    ///     bba7fbff9bc762419a76d87b16086eac000000000100000001a6b97044d03da79c005b20ea9c0e1a6d9d\
    ///     c12d9f7b91a5911c9030a439eed8f5000000004948304502206e21798a42fae0e854281abd38bacd1aee\
    ///     d3ee3738d9e1446618c4571d1090db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d\
    ///     5d6cc8d25c6b241501ffffffff0100f2052a010000001976a914404371705fa9bd789a2fcd52d2c580b6\
    ///     5d35549d88ac00000000").unwrap();
    /// let block: Block = bitcoin::consensus::deserialize(&block_bytes).unwrap();
    ///
    /// // Create a merkle block containing a single transaction
    /// let txid = "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2".parse::<Txid>().unwrap();
    /// let match_txids: Vec<Txid> = vec![txid].into_iter().collect();
    /// let mb = MerkleBlock::from_block_with_predicate(&block, |t| match_txids.contains(t));
    ///
    /// // Authenticate and extract matched transaction ids
    /// let mut matches: Vec<Txid> = vec![];
    /// let mut index: Vec<u32> = vec![];
    /// assert!(mb.extract_matches(&mut matches, &mut index).is_ok());
    /// assert_eq!(txid, matches[0]);
    /// ```
    pub fn from_block_with_predicate<F>(block: &Block, match_txids: F) -> Self
    where
        F: Fn(&Txid) -> bool,
    {
        let block_txids: Vec<_> = block.txdata.iter().map(Transaction::compute_txid).collect();
        Self::from_header_txids_with_predicate(&block.header, &block_txids, match_txids)
    }

    /// Create a MerkleBlock from the block's header and txids, that contain proofs for specific txids.
    ///
    /// The `header` is the block header, `block_txids` is the full list of txids included in the block and
    /// `match_txids` is a function that returns true for the ids that should be included in the partial merkle tree.
    pub fn from_header_txids_with_predicate<F>(
        header: &block::Header,
        block_txids: &[Txid],
        match_txids: F,
    ) -> Self
    where
        F: Fn(&Txid) -> bool,
    {
        let matches: Vec<bool> = block_txids.iter().map(match_txids).collect();

        let pmt = PartialMerkleTree::from_txids(block_txids, &matches);
        MerkleBlock { header: *header, txn: pmt }
    }

    /// Extract the matching txid's represented by this partial merkle tree
    /// and their respective indices within the partial tree.
    /// returns Ok(()) on success, or error in case of failure
    pub fn extract_matches(
        &self,
        matches: &mut Vec<Txid>,
        indexes: &mut Vec<u32>,
    ) -> Result<(), MerkleBlockError> {
        let merkle_root = self.txn.extract_matches(matches, indexes)?;

        if merkle_root.eq(&self.header.merkle_root) {
            Ok(())
        } else {
            Err(MerkleRootMismatch)
        }
    }
}

impl Encodable for MerkleBlock {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let len = self.header.consensus_encode(w)? + self.txn.consensus_encode(w)?;
        Ok(len)
    }
}

impl Decodable for MerkleBlock {
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
        Ok(MerkleBlock {
            header: Decodable::consensus_decode(r)?,
            txn: Decodable::consensus_decode(r)?,
        })
    }
}

/// Data structure that represents a partial merkle tree.
///
/// It represents a subset of the txid's of a known block, in a way that
/// allows recovery of the list of txid's and the merkle root, in an
/// authenticated way.
///
/// The encoding works as follows: we traverse the tree in depth-first order,
/// storing a bit for each traversed node, signifying whether the node is the
/// parent of at least one matched leaf txid (or a matched txid itself). In
/// case we are at the leaf level, or this bit is 0, its merkle node hash is
/// stored, and its children are not explored further. Otherwise, no hash is
/// stored, but we recurse into both (or the only) child branch. During
/// decoding, the same depth-first traversal is performed, consuming bits and
/// hashes as they written during encoding.
///
/// The serialization is fixed and provides a hard guarantee about the
/// encoded size:
///
///   SIZE <= 10 + ceil(32.25*N)
///
/// Where N represents the number of leaf nodes of the partial tree. N itself
/// is bounded by:
///
///   N <= total_transactions
///   N <= 1 + matched_transactions*tree_height
///
/// The serialization format:
///  - uint32     total_transactions (4 bytes)
///  - varint     number of hashes   (1-3 bytes)
///  - uint256[]  hashes in depth-first order (<= 32*N bytes)
///  - varint     number of bytes of flag bits (1-3 bytes)
///  - byte[]     flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits)
///
/// The size constraints follow from this.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct PartialMerkleTree {
    /// The total number of transactions in the block
    num_transactions: u32,
    /// node-is-parent-of-matched-txid bits
    bits: Vec<bool>,
    /// Transaction ids and internal hashes
    hashes: Vec<TxMerkleNode>,
}

impl PartialMerkleTree {
    /// Returns the total number of transactions in the block.
    pub fn num_transactions(&self) -> u32 { self.num_transactions }

    /// Returns the node-is-parent-of-matched-txid bits of the partial merkle tree.
    pub fn bits(&self) -> &Vec<bool> { &self.bits }

    /// Returns the transaction ids and internal hashes of the partial merkle tree.
    pub fn hashes(&self) -> &Vec<TxMerkleNode> { &self.hashes }

    /// Construct a partial merkle tree
    /// The `txids` are the transaction hashes of the block and the `matches` is the contains flags
    /// wherever a tx hash should be included in the proof.
    ///
    /// Panics when `txids` is empty or when `matches` has a different length
    ///
    /// # Examples
    ///
    /// ```rust
    /// use bitcoin::hash_types::Txid;
    /// use bitcoin::hex::FromHex;
    /// use bitcoin::merkle_tree::{MerkleBlock, PartialMerkleTree};
    ///
    /// // Block 80000
    /// let txids: Vec<Txid> = [
    ///     "c06fbab289f723c6261d3030ddb6be121f7d2508d77862bb1e484f5cd7f92b25",
    ///     "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2",
    /// ]
    /// .iter()
    /// .map(|hex| hex.parse::<Txid>().unwrap())
    /// .collect();
    ///
    /// // Select the second transaction
    /// let matches = vec![false, true];
    /// let tree = PartialMerkleTree::from_txids(&txids, &matches);
    /// assert!(tree.extract_matches(&mut vec![], &mut vec![]).is_ok());
    /// ```
    pub fn from_txids(txids: &[Txid], matches: &[bool]) -> Self {
        // We can never have zero txs in a merkle block, we always need the coinbase tx
        assert_ne!(txids.len(), 0);
        assert_eq!(txids.len(), matches.len());

        let mut pmt = PartialMerkleTree {
            num_transactions: txids.len() as u32,
            bits: Vec::with_capacity(txids.len()),
            hashes: vec![],
        };
        let height = pmt.calc_tree_height();

        // traverse the partial tree
        pmt.traverse_and_build(height, 0, txids, matches);
        pmt
    }

    /// Extract the matching txid's represented by this partial merkle tree
    /// and their respective indices within the partial tree.
    /// returns the merkle root, or error in case of failure
    pub fn extract_matches(
        &self,
        matches: &mut Vec<Txid>,
        indexes: &mut Vec<u32>,
    ) -> Result<TxMerkleNode, MerkleBlockError> {
        matches.clear();
        indexes.clear();
        // An empty set will not work
        if self.num_transactions == 0 {
            return Err(NoTransactions);
        };
        // check for excessively high numbers of transactions
        if self.num_transactions as u64 > Weight::MAX_BLOCK / Weight::MIN_TRANSACTION {
            return Err(TooManyTransactions);
        }
        // there can never be more hashes provided than one for every txid
        if self.hashes.len() as u32 > self.num_transactions {
            return Err(TooManyHashes);
        };
        // there must be at least one bit per node in the partial tree, and at least one node per hash
        if self.bits.len() < self.hashes.len() {
            return Err(NotEnoughBits);
        };

        let height = self.calc_tree_height();

        // traverse the partial tree
        let mut bits_used = 0u32;
        let mut hash_used = 0u32;
        let hash_merkle_root =
            self.traverse_and_extract(height, 0, &mut bits_used, &mut hash_used, matches, indexes)?;
        // Verify that all bits were consumed (except for the padding caused by
        // serializing it as a byte sequence)
        if (bits_used + 7) / 8 != (self.bits.len() as u32 + 7) / 8 {
            return Err(NotAllBitsConsumed);
        }
        // Verify that all hashes were consumed
        if hash_used != self.hashes.len() as u32 {
            return Err(NotAllHashesConsumed);
        }
        Ok(TxMerkleNode::from_byte_array(hash_merkle_root.to_byte_array()))
    }

    /// Calculates the height of the tree.
    fn calc_tree_height(&self) -> u32 {
        let mut height = 0;
        while self.calc_tree_width(height) > 1 {
            height += 1;
        }
        height
    }

    /// Helper function to efficiently calculate the number of nodes at given height
    /// in the merkle tree
    #[inline]
    fn calc_tree_width(&self, height: u32) -> u32 {
        (self.num_transactions + (1 << height) - 1) >> height
    }

    /// Calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves)
    fn calc_hash(&self, height: u32, pos: u32, txids: &[Txid]) -> TxMerkleNode {
        if height == 0 {
            // Hash at height 0 is the txid itself
            TxMerkleNode::from_byte_array(txids[pos as usize].to_byte_array())
        } else {
            // Calculate left hash
            let left = self.calc_hash(height - 1, pos * 2, txids);
            // Calculate right hash if not beyond the end of the array - copy left hash otherwise
            let right = if pos * 2 + 1 < self.calc_tree_width(height - 1) {
                self.calc_hash(height - 1, pos * 2 + 1, txids)
            } else {
                left
            };
            // Combine subhashes
            PartialMerkleTree::parent_hash(left, right)
        }
    }

    /// Recursive function that traverses tree nodes, storing the data as bits and hashes
    fn traverse_and_build(&mut self, height: u32, pos: u32, txids: &[Txid], matches: &[bool]) {
        // Determine whether this node is the parent of at least one matched txid
        let mut parent_of_match = false;
        let mut p = pos << height;
        while p < (pos + 1) << height && p < self.num_transactions {
            parent_of_match |= matches[p as usize];
            p += 1;
        }
        // Store as flag bit
        self.bits.push(parent_of_match);

        if height == 0 || !parent_of_match {
            // If at height 0, or nothing interesting below, store hash and stop
            let hash = self.calc_hash(height, pos, txids);
            self.hashes.push(hash);
        } else {
            // Otherwise, don't store any hash, but descend into the subtrees
            self.traverse_and_build(height - 1, pos * 2, txids, matches);
            if pos * 2 + 1 < self.calc_tree_width(height - 1) {
                self.traverse_and_build(height - 1, pos * 2 + 1, txids, matches);
            }
        }
    }

    /// Recursive function that traverses tree nodes, consuming the bits and hashes produced by
    /// TraverseAndBuild. It returns the hash of the respective node and its respective index.
    fn traverse_and_extract(
        &self,
        height: u32,
        pos: u32,
        bits_used: &mut u32,
        hash_used: &mut u32,
        matches: &mut Vec<Txid>,
        indexes: &mut Vec<u32>,
    ) -> Result<TxMerkleNode, MerkleBlockError> {
        if *bits_used as usize >= self.bits.len() {
            return Err(BitsArrayOverflow);
        }
        let parent_of_match = self.bits[*bits_used as usize];
        *bits_used += 1;
        if height == 0 || !parent_of_match {
            // If at height 0, or nothing interesting below, use stored hash and do not descend
            if *hash_used as usize >= self.hashes.len() {
                return Err(HashesArrayOverflow);
            }
            let hash = self.hashes[*hash_used as usize];
            *hash_used += 1;
            if height == 0 && parent_of_match {
                // in case of height 0, we have a matched txid
                matches.push(Txid::from_byte_array(hash.to_byte_array()));
                indexes.push(pos);
            }
            Ok(hash)
        } else {
            // otherwise, descend into the subtrees to extract matched txids and hashes
            let left = self.traverse_and_extract(
                height - 1,
                pos * 2,
                bits_used,
                hash_used,
                matches,
                indexes,
            )?;
            let right;
            if pos * 2 + 1 < self.calc_tree_width(height - 1) {
                right = self.traverse_and_extract(
                    height - 1,
                    pos * 2 + 1,
                    bits_used,
                    hash_used,
                    matches,
                    indexes,
                )?;
                if right == left {
                    // The left and right branches should never be identical, as the transaction
                    // hashes covered by them must each be unique.
                    return Err(IdenticalHashesFound);
                }
            } else {
                right = left;
            }
            // and combine them before returning
            Ok(PartialMerkleTree::parent_hash(left, right))
        }
    }

    /// Helper method to produce SHA256D(left + right)
    fn parent_hash(left: TxMerkleNode, right: TxMerkleNode) -> TxMerkleNode {
        let mut encoder = TxMerkleNode::engine();
        left.consensus_encode(&mut encoder).expect("engines don't error");
        right.consensus_encode(&mut encoder).expect("engines don't error");
        TxMerkleNode::from_engine(encoder)
    }
}

impl Encodable for PartialMerkleTree {
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let mut ret = self.num_transactions.consensus_encode(w)?;
        ret += self.hashes.consensus_encode(w)?;

        let nb_bytes_for_bits = (self.bits.len() + 7) / 8;
        ret += encode::VarInt::from(nb_bytes_for_bits).consensus_encode(w)?;
        for chunk in self.bits.chunks(8) {
            let mut byte = 0u8;
            for (i, bit) in chunk.iter().enumerate() {
                byte |= (*bit as u8) << i;
            }
            ret += byte.consensus_encode(w)?;
        }
        Ok(ret)
    }
}

impl Decodable for PartialMerkleTree {
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
        r: &mut R,
    ) -> Result<Self, encode::Error> {
        let num_transactions: u32 = Decodable::consensus_decode(r)?;
        let hashes: Vec<TxMerkleNode> = Decodable::consensus_decode(r)?;

        let nb_bytes_for_bits = encode::VarInt::consensus_decode(r)?.0 as usize;
        if nb_bytes_for_bits > MAX_VEC_SIZE {
            return Err(encode::Error::OversizedVectorAllocation {
                requested: nb_bytes_for_bits,
                max: MAX_VEC_SIZE,
            });
        }
        let mut bits = vec![false; nb_bytes_for_bits * 8];
        for chunk in bits.chunks_mut(8) {
            let byte = u8::consensus_decode(r)?;
            for (i, bit) in chunk.iter_mut().enumerate() {
                *bit = (byte & (1 << i)) != 0;
            }
        }

        Ok(PartialMerkleTree { num_transactions, hashes, bits })
    }
}

/// An error when verifying the merkle block.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum MerkleBlockError {
    /// Merkle root in the header doesn't match to the root calculated from partial merkle tree.
    MerkleRootMismatch,
    /// Partial merkle tree contains no transactions.
    NoTransactions,
    /// There are too many transactions.
    TooManyTransactions,
    /// There are too many hashes
    TooManyHashes,
    /// There must be at least one bit per node in the partial tree,
    /// and at least one node per hash
    NotEnoughBits,
    /// Not all bits were consumed
    NotAllBitsConsumed,
    /// Not all hashes were consumed
    NotAllHashesConsumed,
    /// Overflowed the bits array
    BitsArrayOverflow,
    /// Overflowed the hashes array
    HashesArrayOverflow,
    /// The left and right branches should never be identical
    IdenticalHashesFound,
}

internals::impl_from_infallible!(MerkleBlockError);

impl fmt::Display for MerkleBlockError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use MerkleBlockError::*;

        match *self {
            MerkleRootMismatch => write!(f, "merkle header root doesn't match to the root calculated from the partial merkle tree"),
            NoTransactions => write!(f, "partial merkle tree contains no transactions"),
            TooManyTransactions => write!(f, "too many transactions"),
            TooManyHashes => write!(f, "proof contains more hashes than transactions"),
            NotEnoughBits => write!(f, "proof contains less bits than hashes"),
            NotAllBitsConsumed => write!(f, "not all bit were consumed"),
            NotAllHashesConsumed => write!(f, "not all hashes were consumed"),
            BitsArrayOverflow => write!(f, "overflowed the bits array"),
            HashesArrayOverflow => write!(f, "overflowed the hashes array"),
            IdenticalHashesFound => write!(f, "found identical transaction hashes"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for MerkleBlockError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use MerkleBlockError::*;

        match *self {
            MerkleRootMismatch | NoTransactions | TooManyTransactions | TooManyHashes
            | NotEnoughBits | NotAllBitsConsumed | NotAllHashesConsumed | BitsArrayOverflow
            | HashesArrayOverflow | IdenticalHashesFound => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use hex::test_hex_unwrap as hex;
    #[cfg(feature = "rand-std")]
    use secp256k1::rand::prelude::*;

    use super::*;
    use crate::consensus::encode::{deserialize, serialize};

    #[cfg(feature = "rand-std")]
    macro_rules! pmt_tests {
        ($($name:ident),* $(,)?) => {
            $(
                #[test]
                fn $name() {
                    pmt_test_from_name(stringify!($name));
                }
            )*
        }
    }

    #[cfg(feature = "rand-std")]
    pmt_tests!(
        pmt_test_1,
        pmt_test_4,
        pmt_test_7,
        pmt_test_17,
        pmt_test_56,
        pmt_test_100,
        pmt_test_127,
        pmt_test_256,
        pmt_test_312,
        pmt_test_513,
        pmt_test_1000,
        pmt_test_4095
    );

    /// Parses the transaction count out of `name` with form: `pmt_test_$num`.
    #[cfg(feature = "rand-std")]
    fn pmt_test_from_name(name: &str) { pmt_test(name[9..].parse().unwrap()) }

    #[cfg(feature = "rand-std")]
    fn pmt_test(tx_count: usize) {
        use core::cmp::min;

        use crate::merkle_tree;

        let mut rng = thread_rng();
        // Create some fake tx ids
        let tx_ids = (1..=tx_count)
            .map(|i| format!("{:064x}", i).parse::<Txid>().unwrap())
            .collect::<Vec<_>>();

        // Calculate the merkle root and height
        let hashes = tx_ids.iter().map(|t| t.to_raw_hash());
        let merkle_root_1: TxMerkleNode =
            merkle_tree::calculate_root(hashes).expect("hashes is not empty").into();
        let mut height = 1;
        let mut ntx = tx_count;
        while ntx > 1 {
            ntx = (ntx + 1) / 2;
            height += 1;
        }

        // Check with random subsets with inclusion chances 1, 1/2, 1/4, ..., 1/128
        for att in 1..15 {
            let mut matches = vec![false; tx_count];
            let mut match_txid1 = vec![];
            for j in 0..tx_count {
                // Generate `att / 2` random bits
                let rand_bits = match att / 2 {
                    0 => 0,
                    bits => rng.gen::<u64>() >> (64 - bits),
                };
                let include = rand_bits == 0;
                matches[j] = include;

                if include {
                    match_txid1.push(tx_ids[j]);
                };
            }

            // Build the partial merkle tree
            let pmt1 = PartialMerkleTree::from_txids(&tx_ids, &matches);
            let serialized = serialize(&pmt1);

            // Verify PartialMerkleTree's size guarantees
            let n = min(tx_count, 1 + match_txid1.len() * height);
            assert!(serialized.len() <= 10 + (258 * n + 7) / 8);

            // Deserialize into a tester copy
            let pmt2: PartialMerkleTree =
                deserialize(&serialized).expect("Could not deserialize own data");

            // Extract merkle root and matched txids from copy
            let mut match_txid2: Vec<Txid> = vec![];
            let mut indexes = vec![];
            let merkle_root_2 = pmt2
                .extract_matches(&mut match_txid2, &mut indexes)
                .expect("Could not extract matches");

            // Check that it has the same merkle root as the original, and a valid one
            assert_eq!(merkle_root_1, merkle_root_2);
            assert_ne!(merkle_root_2, TxMerkleNode::all_zeros());

            // check that it contains the matched transactions (in the same order!)
            assert_eq!(match_txid1, match_txid2);

            // check that random bit flips break the authentication
            for _ in 0..4 {
                let mut pmt3: PartialMerkleTree = deserialize(&serialized).unwrap();
                pmt3.damage(&mut rng);
                let mut match_txid3 = vec![];
                let merkle_root_3 = pmt3.extract_matches(&mut match_txid3, &mut indexes).unwrap();
                assert_ne!(merkle_root_3, merkle_root_1);
            }
        }
    }

    #[test]
    fn pmt_malleability() {
        // Create some fake tx ids with the last 2 hashes repeating
        let txids: Vec<Txid> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10]
            .iter()
            .map(|i| format!("{:064x}", i).parse::<Txid>().unwrap())
            .collect();

        let matches =
            vec![false, false, false, false, false, false, false, false, false, true, true, false];

        let tree = PartialMerkleTree::from_txids(&txids, &matches);
        // Should fail due to duplicate txs found
        let result = tree.extract_matches(&mut vec![], &mut vec![]);
        assert!(result.is_err());
    }

    #[test]
    fn merkleblock_serialization() {
        // Got it by running the rpc call
        // `gettxoutproof '["220ebc64e21abece964927322cba69180ed853bb187fbc6923bac7d010b9d87a"]'`
        let mb_hex = include_str!("../../tests/data/merkle_block.hex");

        let mb: MerkleBlock = deserialize(&hex!(mb_hex)).unwrap();
        assert_eq!(get_block_13b8a().block_hash(), mb.header.block_hash());
        assert_eq!(
            mb.header.merkle_root,
            mb.txn.extract_matches(&mut vec![], &mut vec![]).unwrap()
        );
        // Serialize again and check that it matches the original bytes
        assert_eq!(mb_hex, serialize(&mb).to_lower_hex_string().as_str());
    }

    /// Create a CMerkleBlock using a list of txids which will be found in the
    /// given block.
    #[test]
    fn merkleblock_construct_from_txids_found() {
        let block = get_block_13b8a();

        let txids: Vec<Txid> = [
            "74d681e0e03bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20",
            "f9fc751cb7dc372406a9f8d738d5e6f8f63bab71986a39cf36ee70ee17036d07",
        ]
        .iter()
        .map(|hex| hex.parse::<Txid>().unwrap())
        .collect();

        let txid1 = txids[0];
        let txid2 = txids[1];
        let txids = [txid1, txid2];

        let merkle_block = MerkleBlock::from_block_with_predicate(&block, |t| txids.contains(t));

        assert_eq!(merkle_block.header.block_hash(), block.block_hash());

        let mut matches: Vec<Txid> = vec![];
        let mut index: Vec<u32> = vec![];

        assert_eq!(
            merkle_block.txn.extract_matches(&mut matches, &mut index).unwrap(),
            block.header.merkle_root
        );
        assert_eq!(matches.len(), 2);

        // Ordered by occurrence in depth-first tree traversal.
        assert_eq!(matches[0], txid2);
        assert_eq!(index[0], 1);

        assert_eq!(matches[1], txid1);
        assert_eq!(index[1], 8);
    }

    /// Create a CMerkleBlock using a list of txids which will not be found in the given block
    #[test]
    fn merkleblock_construct_from_txids_not_found() {
        let block = get_block_13b8a();
        let txids: Vec<Txid> = ["c0ffee00003bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20"]
            .iter()
            .map(|hex| hex.parse::<Txid>().unwrap())
            .collect();

        let merkle_block = MerkleBlock::from_block_with_predicate(&block, |t| txids.contains(t));

        assert_eq!(merkle_block.header.block_hash(), block.block_hash());

        let mut matches: Vec<Txid> = vec![];
        let mut index: Vec<u32> = vec![];

        assert_eq!(
            merkle_block.txn.extract_matches(&mut matches, &mut index).unwrap(),
            block.header.merkle_root
        );
        assert_eq!(matches.len(), 0);
        assert_eq!(index.len(), 0);
    }

    #[cfg(feature = "rand-std")]
    impl PartialMerkleTree {
        /// Flip one bit in one of the hashes - this should break the authentication
        fn damage(&mut self, rng: &mut ThreadRng) {
            let n = rng.gen_range(0..self.hashes.len());
            let bit = rng.gen::<u8>();
            let hashes = &mut self.hashes;
            let mut hash = hashes[n].to_byte_array();
            hash[(bit >> 3) as usize] ^= 1 << (bit & 7);
            hashes[n] = TxMerkleNode::from_slice(&hash).unwrap();
        }
    }

    /// Returns a real block (0000000000013b8ab2cd513b0261a14096412195a72a0c4827d229dcc7e0f7af)
    /// with 9 txs.
    fn get_block_13b8a() -> Block {
        use hex::FromHex;
        let block_hex = include_str!("../../tests/data/block_13b8a.hex");
        deserialize(&Vec::from_hex(block_hex).unwrap()).unwrap()
    }

    macro_rules! check_calc_tree_width {
        ($($test_name:ident, $num_transactions:literal, $height:literal, $expected_width:literal);* $(;)?) => {
            $(
                #[test]
                fn $test_name() {
                    let pmt = PartialMerkleTree {
                        num_transactions: $num_transactions,
                        bits: vec![],
                        hashes: vec![],
                    };
                    let got = pmt.calc_tree_width($height);
                    assert_eq!(got, $expected_width)
                }
            )*
        }
    }

    // tree_width_<id> <num txs> <height> <expected_width>
    //
    // height 0 is the bottom of the tree, where the leaves are.
    check_calc_tree_width! {
        tree_width_01, 1, 0, 1;
        //
        tree_width_02, 2, 0, 2;
        tree_width_03, 2, 1, 1;
        //
        tree_width_04, 3, 0, 3;
        tree_width_05, 3, 1, 2;
        tree_width_06, 3, 2, 1;
        //
        tree_width_07, 4, 0, 4;
        tree_width_08, 4, 1, 2;
        tree_width_09, 4, 2, 1;
        //
        tree_width_10, 5, 0, 5;
        tree_width_11, 5, 1, 3;
        tree_width_12, 5, 2, 2;
        tree_width_13, 5, 3, 1;
        //
        tree_width_14, 6, 0, 6;
        tree_width_15, 6, 1, 3;
        tree_width_16, 6, 2, 2;
        tree_width_17, 6, 3, 1;
        //
        tree_width_18, 7, 0, 7;
        tree_width_19, 7, 1, 4;
        tree_width_20, 7, 2, 2;
        tree_width_21, 7, 3, 1;
    }

    #[test]
    fn regression_2606() {
        // Attempt
        let bytes = hex!(
            "000006000000000000000004ee00000004c7f1ccb1000000ffff000000010000\
             0000ffffffffff1f000000000400000000000002000000000500000000000000\
             000000000300000000000003000000000200000000ff00000000c7f1ccb10407\
             00000000000000ccb100c76538b100000004bfa9c251681b1b00040000000025\
             00000004bfaac251681b1b25\
         "
        );
        let deser = crate::consensus::deserialize::<MerkleBlock>(&bytes);
        assert!(deser.is_err());
    }
}