1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
// SPDX-License-Identifier: CC0-1.0
//
// This code was translated from merkleblock.h, merkleblock.cpp and pmt_tests.cpp
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// SPDX-License-Identifier: MIT
//! Merkle Block and Partial Merkle Tree.
//!
//! Support proofs that transaction(s) belong to a block.
//!
//! # Examples
//!
//! ```rust
//! use bitcoin::hash_types::Txid;
//! use bitcoin::hex::FromHex;
//! use bitcoin::{Block, MerkleBlock};
//!
//! // Get the proof from a bitcoind by running in the terminal:
//! // $ TXID="5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2"
//! // $ bitcoin-cli gettxoutproof [\"$TXID\"]
//! let mb_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad27b913719\
//! 0000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33a5914ce6ed5b\
//! 1b01e32f570200000002252bf9d75c4f481ebb6278d708257d1f12beb6dd30301d26c623f789b2ba6fc0e2d3\
//! 2adb5f8ca820731dff234a84e78ec30bce4ec69dbd562d0b2b8266bf4e5a0105").unwrap();
//! let mb: MerkleBlock = bitcoin::consensus::deserialize(&mb_bytes).unwrap();
//!
//! // Authenticate and extract matched transaction ids
//! let mut matches: Vec<Txid> = vec![];
//! let mut index: Vec<u32> = vec![];
//! assert!(mb.extract_matches(&mut matches, &mut index).is_ok());
//! assert_eq!(1, matches.len());
//! assert_eq!(
//! "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2".parse::<Txid>().unwrap(),
//! matches[0]
//! );
//! assert_eq!(1, index.len());
//! assert_eq!(1, index[0]);
//! ```
use core::fmt;
use hashes::Hash;
use io::{Read, Write};
use self::MerkleBlockError::*;
use crate::blockdata::block::{self, Block, TxMerkleNode};
use crate::blockdata::transaction::{Transaction, Txid};
use crate::blockdata::weight::Weight;
use crate::consensus::encode::{self, Decodable, Encodable, MAX_VEC_SIZE};
use crate::prelude::*;
/// Data structure that represents a block header paired to a partial merkle tree.
///
/// NOTE: This assumes that the given Block has *at least* 1 transaction. If the Block has 0 txs,
/// it will hit an assertion.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct MerkleBlock {
/// The block header
pub header: block::Header,
/// Transactions making up a partial merkle tree
pub txn: PartialMerkleTree,
}
impl MerkleBlock {
/// Create a MerkleBlock from a block, that contains proofs for specific txids.
///
/// The `block` is a full block containing the header and transactions and `match_txids` is a
/// function that returns true for the ids that should be included in the partial merkle tree.
///
/// # Examples
///
/// ```rust
/// use bitcoin::hash_types::Txid;
/// use bitcoin::hex::FromHex;
/// use bitcoin::{Block, MerkleBlock};
///
/// // Block 80000
/// let block_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad2\
/// 7b9137190000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33\
/// a5914ce6ed5b1b01e32f5702010000000100000000000000000000000000000000000000000000000000\
/// 00000000000000ffffffff0704e6ed5b1b014effffffff0100f2052a01000000434104b68a50eaa0287e\
/// ff855189f949c1c6e5f58b37c88231373d8a59809cbae83059cc6469d65c665ccfd1cfeb75c6e8e19413\
/// bba7fbff9bc762419a76d87b16086eac000000000100000001a6b97044d03da79c005b20ea9c0e1a6d9d\
/// c12d9f7b91a5911c9030a439eed8f5000000004948304502206e21798a42fae0e854281abd38bacd1aee\
/// d3ee3738d9e1446618c4571d1090db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d\
/// 5d6cc8d25c6b241501ffffffff0100f2052a010000001976a914404371705fa9bd789a2fcd52d2c580b6\
/// 5d35549d88ac00000000").unwrap();
/// let block: Block = bitcoin::consensus::deserialize(&block_bytes).unwrap();
///
/// // Create a merkle block containing a single transaction
/// let txid = "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2".parse::<Txid>().unwrap();
/// let match_txids: Vec<Txid> = vec![txid].into_iter().collect();
/// let mb = MerkleBlock::from_block_with_predicate(&block, |t| match_txids.contains(t));
///
/// // Authenticate and extract matched transaction ids
/// let mut matches: Vec<Txid> = vec![];
/// let mut index: Vec<u32> = vec![];
/// assert!(mb.extract_matches(&mut matches, &mut index).is_ok());
/// assert_eq!(txid, matches[0]);
/// ```
pub fn from_block_with_predicate<F>(block: &Block, match_txids: F) -> Self
where
F: Fn(&Txid) -> bool,
{
let block_txids: Vec<_> = block.txdata.iter().map(Transaction::compute_txid).collect();
Self::from_header_txids_with_predicate(&block.header, &block_txids, match_txids)
}
/// Create a MerkleBlock from the block's header and txids, that contain proofs for specific txids.
///
/// The `header` is the block header, `block_txids` is the full list of txids included in the block and
/// `match_txids` is a function that returns true for the ids that should be included in the partial merkle tree.
pub fn from_header_txids_with_predicate<F>(
header: &block::Header,
block_txids: &[Txid],
match_txids: F,
) -> Self
where
F: Fn(&Txid) -> bool,
{
let matches: Vec<bool> = block_txids.iter().map(match_txids).collect();
let pmt = PartialMerkleTree::from_txids(block_txids, &matches);
MerkleBlock { header: *header, txn: pmt }
}
/// Extract the matching txid's represented by this partial merkle tree
/// and their respective indices within the partial tree.
/// returns Ok(()) on success, or error in case of failure
pub fn extract_matches(
&self,
matches: &mut Vec<Txid>,
indexes: &mut Vec<u32>,
) -> Result<(), MerkleBlockError> {
let merkle_root = self.txn.extract_matches(matches, indexes)?;
if merkle_root.eq(&self.header.merkle_root) {
Ok(())
} else {
Err(MerkleRootMismatch)
}
}
}
impl Encodable for MerkleBlock {
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
let len = self.header.consensus_encode(w)? + self.txn.consensus_encode(w)?;
Ok(len)
}
}
impl Decodable for MerkleBlock {
fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
Ok(MerkleBlock {
header: Decodable::consensus_decode(r)?,
txn: Decodable::consensus_decode(r)?,
})
}
}
/// Data structure that represents a partial merkle tree.
///
/// It represents a subset of the txid's of a known block, in a way that
/// allows recovery of the list of txid's and the merkle root, in an
/// authenticated way.
///
/// The encoding works as follows: we traverse the tree in depth-first order,
/// storing a bit for each traversed node, signifying whether the node is the
/// parent of at least one matched leaf txid (or a matched txid itself). In
/// case we are at the leaf level, or this bit is 0, its merkle node hash is
/// stored, and its children are not explored further. Otherwise, no hash is
/// stored, but we recurse into both (or the only) child branch. During
/// decoding, the same depth-first traversal is performed, consuming bits and
/// hashes as they written during encoding.
///
/// The serialization is fixed and provides a hard guarantee about the
/// encoded size:
///
/// SIZE <= 10 + ceil(32.25*N)
///
/// Where N represents the number of leaf nodes of the partial tree. N itself
/// is bounded by:
///
/// N <= total_transactions
/// N <= 1 + matched_transactions*tree_height
///
/// The serialization format:
/// - uint32 total_transactions (4 bytes)
/// - varint number of hashes (1-3 bytes)
/// - uint256[] hashes in depth-first order (<= 32*N bytes)
/// - varint number of bytes of flag bits (1-3 bytes)
/// - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits)
///
/// The size constraints follow from this.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct PartialMerkleTree {
/// The total number of transactions in the block
num_transactions: u32,
/// node-is-parent-of-matched-txid bits
bits: Vec<bool>,
/// Transaction ids and internal hashes
hashes: Vec<TxMerkleNode>,
}
impl PartialMerkleTree {
/// Returns the total number of transactions in the block.
pub fn num_transactions(&self) -> u32 { self.num_transactions }
/// Returns the node-is-parent-of-matched-txid bits of the partial merkle tree.
pub fn bits(&self) -> &Vec<bool> { &self.bits }
/// Returns the transaction ids and internal hashes of the partial merkle tree.
pub fn hashes(&self) -> &Vec<TxMerkleNode> { &self.hashes }
/// Construct a partial merkle tree
/// The `txids` are the transaction hashes of the block and the `matches` is the contains flags
/// wherever a tx hash should be included in the proof.
///
/// Panics when `txids` is empty or when `matches` has a different length
///
/// # Examples
///
/// ```rust
/// use bitcoin::hash_types::Txid;
/// use bitcoin::hex::FromHex;
/// use bitcoin::merkle_tree::{MerkleBlock, PartialMerkleTree};
///
/// // Block 80000
/// let txids: Vec<Txid> = [
/// "c06fbab289f723c6261d3030ddb6be121f7d2508d77862bb1e484f5cd7f92b25",
/// "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2",
/// ]
/// .iter()
/// .map(|hex| hex.parse::<Txid>().unwrap())
/// .collect();
///
/// // Select the second transaction
/// let matches = vec![false, true];
/// let tree = PartialMerkleTree::from_txids(&txids, &matches);
/// assert!(tree.extract_matches(&mut vec![], &mut vec![]).is_ok());
/// ```
pub fn from_txids(txids: &[Txid], matches: &[bool]) -> Self {
// We can never have zero txs in a merkle block, we always need the coinbase tx
assert_ne!(txids.len(), 0);
assert_eq!(txids.len(), matches.len());
let mut pmt = PartialMerkleTree {
num_transactions: txids.len() as u32,
bits: Vec::with_capacity(txids.len()),
hashes: vec![],
};
let height = pmt.calc_tree_height();
// traverse the partial tree
pmt.traverse_and_build(height, 0, txids, matches);
pmt
}
/// Extract the matching txid's represented by this partial merkle tree
/// and their respective indices within the partial tree.
/// returns the merkle root, or error in case of failure
pub fn extract_matches(
&self,
matches: &mut Vec<Txid>,
indexes: &mut Vec<u32>,
) -> Result<TxMerkleNode, MerkleBlockError> {
matches.clear();
indexes.clear();
// An empty set will not work
if self.num_transactions == 0 {
return Err(NoTransactions);
};
// check for excessively high numbers of transactions
if self.num_transactions as u64 > Weight::MAX_BLOCK / Weight::MIN_TRANSACTION {
return Err(TooManyTransactions);
}
// there can never be more hashes provided than one for every txid
if self.hashes.len() as u32 > self.num_transactions {
return Err(TooManyHashes);
};
// there must be at least one bit per node in the partial tree, and at least one node per hash
if self.bits.len() < self.hashes.len() {
return Err(NotEnoughBits);
};
let height = self.calc_tree_height();
// traverse the partial tree
let mut bits_used = 0u32;
let mut hash_used = 0u32;
let hash_merkle_root =
self.traverse_and_extract(height, 0, &mut bits_used, &mut hash_used, matches, indexes)?;
// Verify that all bits were consumed (except for the padding caused by
// serializing it as a byte sequence)
if (bits_used + 7) / 8 != (self.bits.len() as u32 + 7) / 8 {
return Err(NotAllBitsConsumed);
}
// Verify that all hashes were consumed
if hash_used != self.hashes.len() as u32 {
return Err(NotAllHashesConsumed);
}
Ok(TxMerkleNode::from_byte_array(hash_merkle_root.to_byte_array()))
}
/// Calculates the height of the tree.
fn calc_tree_height(&self) -> u32 {
let mut height = 0;
while self.calc_tree_width(height) > 1 {
height += 1;
}
height
}
/// Helper function to efficiently calculate the number of nodes at given height
/// in the merkle tree
#[inline]
fn calc_tree_width(&self, height: u32) -> u32 {
(self.num_transactions + (1 << height) - 1) >> height
}
/// Calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves)
fn calc_hash(&self, height: u32, pos: u32, txids: &[Txid]) -> TxMerkleNode {
if height == 0 {
// Hash at height 0 is the txid itself
TxMerkleNode::from_byte_array(txids[pos as usize].to_byte_array())
} else {
// Calculate left hash
let left = self.calc_hash(height - 1, pos * 2, txids);
// Calculate right hash if not beyond the end of the array - copy left hash otherwise
let right = if pos * 2 + 1 < self.calc_tree_width(height - 1) {
self.calc_hash(height - 1, pos * 2 + 1, txids)
} else {
left
};
// Combine subhashes
PartialMerkleTree::parent_hash(left, right)
}
}
/// Recursive function that traverses tree nodes, storing the data as bits and hashes
fn traverse_and_build(&mut self, height: u32, pos: u32, txids: &[Txid], matches: &[bool]) {
// Determine whether this node is the parent of at least one matched txid
let mut parent_of_match = false;
let mut p = pos << height;
while p < (pos + 1) << height && p < self.num_transactions {
parent_of_match |= matches[p as usize];
p += 1;
}
// Store as flag bit
self.bits.push(parent_of_match);
if height == 0 || !parent_of_match {
// If at height 0, or nothing interesting below, store hash and stop
let hash = self.calc_hash(height, pos, txids);
self.hashes.push(hash);
} else {
// Otherwise, don't store any hash, but descend into the subtrees
self.traverse_and_build(height - 1, pos * 2, txids, matches);
if pos * 2 + 1 < self.calc_tree_width(height - 1) {
self.traverse_and_build(height - 1, pos * 2 + 1, txids, matches);
}
}
}
/// Recursive function that traverses tree nodes, consuming the bits and hashes produced by
/// TraverseAndBuild. It returns the hash of the respective node and its respective index.
fn traverse_and_extract(
&self,
height: u32,
pos: u32,
bits_used: &mut u32,
hash_used: &mut u32,
matches: &mut Vec<Txid>,
indexes: &mut Vec<u32>,
) -> Result<TxMerkleNode, MerkleBlockError> {
if *bits_used as usize >= self.bits.len() {
return Err(BitsArrayOverflow);
}
let parent_of_match = self.bits[*bits_used as usize];
*bits_used += 1;
if height == 0 || !parent_of_match {
// If at height 0, or nothing interesting below, use stored hash and do not descend
if *hash_used as usize >= self.hashes.len() {
return Err(HashesArrayOverflow);
}
let hash = self.hashes[*hash_used as usize];
*hash_used += 1;
if height == 0 && parent_of_match {
// in case of height 0, we have a matched txid
matches.push(Txid::from_byte_array(hash.to_byte_array()));
indexes.push(pos);
}
Ok(hash)
} else {
// otherwise, descend into the subtrees to extract matched txids and hashes
let left = self.traverse_and_extract(
height - 1,
pos * 2,
bits_used,
hash_used,
matches,
indexes,
)?;
let right;
if pos * 2 + 1 < self.calc_tree_width(height - 1) {
right = self.traverse_and_extract(
height - 1,
pos * 2 + 1,
bits_used,
hash_used,
matches,
indexes,
)?;
if right == left {
// The left and right branches should never be identical, as the transaction
// hashes covered by them must each be unique.
return Err(IdenticalHashesFound);
}
} else {
right = left;
}
// and combine them before returning
Ok(PartialMerkleTree::parent_hash(left, right))
}
}
/// Helper method to produce SHA256D(left + right)
fn parent_hash(left: TxMerkleNode, right: TxMerkleNode) -> TxMerkleNode {
let mut encoder = TxMerkleNode::engine();
left.consensus_encode(&mut encoder).expect("engines don't error");
right.consensus_encode(&mut encoder).expect("engines don't error");
TxMerkleNode::from_engine(encoder)
}
}
impl Encodable for PartialMerkleTree {
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
let mut ret = self.num_transactions.consensus_encode(w)?;
ret += self.hashes.consensus_encode(w)?;
let nb_bytes_for_bits = (self.bits.len() + 7) / 8;
ret += encode::VarInt::from(nb_bytes_for_bits).consensus_encode(w)?;
for chunk in self.bits.chunks(8) {
let mut byte = 0u8;
for (i, bit) in chunk.iter().enumerate() {
byte |= (*bit as u8) << i;
}
ret += byte.consensus_encode(w)?;
}
Ok(ret)
}
}
impl Decodable for PartialMerkleTree {
fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
r: &mut R,
) -> Result<Self, encode::Error> {
let num_transactions: u32 = Decodable::consensus_decode(r)?;
let hashes: Vec<TxMerkleNode> = Decodable::consensus_decode(r)?;
let nb_bytes_for_bits = encode::VarInt::consensus_decode(r)?.0 as usize;
if nb_bytes_for_bits > MAX_VEC_SIZE {
return Err(encode::Error::OversizedVectorAllocation {
requested: nb_bytes_for_bits,
max: MAX_VEC_SIZE,
});
}
let mut bits = vec![false; nb_bytes_for_bits * 8];
for chunk in bits.chunks_mut(8) {
let byte = u8::consensus_decode(r)?;
for (i, bit) in chunk.iter_mut().enumerate() {
*bit = (byte & (1 << i)) != 0;
}
}
Ok(PartialMerkleTree { num_transactions, hashes, bits })
}
}
/// An error when verifying the merkle block.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum MerkleBlockError {
/// Merkle root in the header doesn't match to the root calculated from partial merkle tree.
MerkleRootMismatch,
/// Partial merkle tree contains no transactions.
NoTransactions,
/// There are too many transactions.
TooManyTransactions,
/// There are too many hashes
TooManyHashes,
/// There must be at least one bit per node in the partial tree,
/// and at least one node per hash
NotEnoughBits,
/// Not all bits were consumed
NotAllBitsConsumed,
/// Not all hashes were consumed
NotAllHashesConsumed,
/// Overflowed the bits array
BitsArrayOverflow,
/// Overflowed the hashes array
HashesArrayOverflow,
/// The left and right branches should never be identical
IdenticalHashesFound,
}
internals::impl_from_infallible!(MerkleBlockError);
impl fmt::Display for MerkleBlockError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use MerkleBlockError::*;
match *self {
MerkleRootMismatch => write!(f, "merkle header root doesn't match to the root calculated from the partial merkle tree"),
NoTransactions => write!(f, "partial merkle tree contains no transactions"),
TooManyTransactions => write!(f, "too many transactions"),
TooManyHashes => write!(f, "proof contains more hashes than transactions"),
NotEnoughBits => write!(f, "proof contains less bits than hashes"),
NotAllBitsConsumed => write!(f, "not all bit were consumed"),
NotAllHashesConsumed => write!(f, "not all hashes were consumed"),
BitsArrayOverflow => write!(f, "overflowed the bits array"),
HashesArrayOverflow => write!(f, "overflowed the hashes array"),
IdenticalHashesFound => write!(f, "found identical transaction hashes"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for MerkleBlockError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use MerkleBlockError::*;
match *self {
MerkleRootMismatch | NoTransactions | TooManyTransactions | TooManyHashes
| NotEnoughBits | NotAllBitsConsumed | NotAllHashesConsumed | BitsArrayOverflow
| HashesArrayOverflow | IdenticalHashesFound => None,
}
}
}
#[cfg(test)]
mod tests {
use hex::test_hex_unwrap as hex;
#[cfg(feature = "rand-std")]
use secp256k1::rand::prelude::*;
use super::*;
use crate::consensus::encode::{deserialize, serialize};
#[cfg(feature = "rand-std")]
macro_rules! pmt_tests {
($($name:ident),* $(,)?) => {
$(
#[test]
fn $name() {
pmt_test_from_name(stringify!($name));
}
)*
}
}
#[cfg(feature = "rand-std")]
pmt_tests!(
pmt_test_1,
pmt_test_4,
pmt_test_7,
pmt_test_17,
pmt_test_56,
pmt_test_100,
pmt_test_127,
pmt_test_256,
pmt_test_312,
pmt_test_513,
pmt_test_1000,
pmt_test_4095
);
/// Parses the transaction count out of `name` with form: `pmt_test_$num`.
#[cfg(feature = "rand-std")]
fn pmt_test_from_name(name: &str) { pmt_test(name[9..].parse().unwrap()) }
#[cfg(feature = "rand-std")]
fn pmt_test(tx_count: usize) {
use core::cmp::min;
use crate::merkle_tree;
let mut rng = thread_rng();
// Create some fake tx ids
let tx_ids = (1..=tx_count)
.map(|i| format!("{:064x}", i).parse::<Txid>().unwrap())
.collect::<Vec<_>>();
// Calculate the merkle root and height
let hashes = tx_ids.iter().map(|t| t.to_raw_hash());
let merkle_root_1: TxMerkleNode =
merkle_tree::calculate_root(hashes).expect("hashes is not empty").into();
let mut height = 1;
let mut ntx = tx_count;
while ntx > 1 {
ntx = (ntx + 1) / 2;
height += 1;
}
// Check with random subsets with inclusion chances 1, 1/2, 1/4, ..., 1/128
for att in 1..15 {
let mut matches = vec![false; tx_count];
let mut match_txid1 = vec![];
for j in 0..tx_count {
// Generate `att / 2` random bits
let rand_bits = match att / 2 {
0 => 0,
bits => rng.gen::<u64>() >> (64 - bits),
};
let include = rand_bits == 0;
matches[j] = include;
if include {
match_txid1.push(tx_ids[j]);
};
}
// Build the partial merkle tree
let pmt1 = PartialMerkleTree::from_txids(&tx_ids, &matches);
let serialized = serialize(&pmt1);
// Verify PartialMerkleTree's size guarantees
let n = min(tx_count, 1 + match_txid1.len() * height);
assert!(serialized.len() <= 10 + (258 * n + 7) / 8);
// Deserialize into a tester copy
let pmt2: PartialMerkleTree =
deserialize(&serialized).expect("Could not deserialize own data");
// Extract merkle root and matched txids from copy
let mut match_txid2: Vec<Txid> = vec![];
let mut indexes = vec![];
let merkle_root_2 = pmt2
.extract_matches(&mut match_txid2, &mut indexes)
.expect("Could not extract matches");
// Check that it has the same merkle root as the original, and a valid one
assert_eq!(merkle_root_1, merkle_root_2);
assert_ne!(merkle_root_2, TxMerkleNode::all_zeros());
// check that it contains the matched transactions (in the same order!)
assert_eq!(match_txid1, match_txid2);
// check that random bit flips break the authentication
for _ in 0..4 {
let mut pmt3: PartialMerkleTree = deserialize(&serialized).unwrap();
pmt3.damage(&mut rng);
let mut match_txid3 = vec![];
let merkle_root_3 = pmt3.extract_matches(&mut match_txid3, &mut indexes).unwrap();
assert_ne!(merkle_root_3, merkle_root_1);
}
}
}
#[test]
fn pmt_malleability() {
// Create some fake tx ids with the last 2 hashes repeating
let txids: Vec<Txid> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10]
.iter()
.map(|i| format!("{:064x}", i).parse::<Txid>().unwrap())
.collect();
let matches =
vec![false, false, false, false, false, false, false, false, false, true, true, false];
let tree = PartialMerkleTree::from_txids(&txids, &matches);
// Should fail due to duplicate txs found
let result = tree.extract_matches(&mut vec![], &mut vec![]);
assert!(result.is_err());
}
#[test]
fn merkleblock_serialization() {
// Got it by running the rpc call
// `gettxoutproof '["220ebc64e21abece964927322cba69180ed853bb187fbc6923bac7d010b9d87a"]'`
let mb_hex = include_str!("../../tests/data/merkle_block.hex");
let mb: MerkleBlock = deserialize(&hex!(mb_hex)).unwrap();
assert_eq!(get_block_13b8a().block_hash(), mb.header.block_hash());
assert_eq!(
mb.header.merkle_root,
mb.txn.extract_matches(&mut vec![], &mut vec![]).unwrap()
);
// Serialize again and check that it matches the original bytes
assert_eq!(mb_hex, serialize(&mb).to_lower_hex_string().as_str());
}
/// Create a CMerkleBlock using a list of txids which will be found in the
/// given block.
#[test]
fn merkleblock_construct_from_txids_found() {
let block = get_block_13b8a();
let txids: Vec<Txid> = [
"74d681e0e03bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20",
"f9fc751cb7dc372406a9f8d738d5e6f8f63bab71986a39cf36ee70ee17036d07",
]
.iter()
.map(|hex| hex.parse::<Txid>().unwrap())
.collect();
let txid1 = txids[0];
let txid2 = txids[1];
let txids = [txid1, txid2];
let merkle_block = MerkleBlock::from_block_with_predicate(&block, |t| txids.contains(t));
assert_eq!(merkle_block.header.block_hash(), block.block_hash());
let mut matches: Vec<Txid> = vec![];
let mut index: Vec<u32> = vec![];
assert_eq!(
merkle_block.txn.extract_matches(&mut matches, &mut index).unwrap(),
block.header.merkle_root
);
assert_eq!(matches.len(), 2);
// Ordered by occurrence in depth-first tree traversal.
assert_eq!(matches[0], txid2);
assert_eq!(index[0], 1);
assert_eq!(matches[1], txid1);
assert_eq!(index[1], 8);
}
/// Create a CMerkleBlock using a list of txids which will not be found in the given block
#[test]
fn merkleblock_construct_from_txids_not_found() {
let block = get_block_13b8a();
let txids: Vec<Txid> = ["c0ffee00003bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20"]
.iter()
.map(|hex| hex.parse::<Txid>().unwrap())
.collect();
let merkle_block = MerkleBlock::from_block_with_predicate(&block, |t| txids.contains(t));
assert_eq!(merkle_block.header.block_hash(), block.block_hash());
let mut matches: Vec<Txid> = vec![];
let mut index: Vec<u32> = vec![];
assert_eq!(
merkle_block.txn.extract_matches(&mut matches, &mut index).unwrap(),
block.header.merkle_root
);
assert_eq!(matches.len(), 0);
assert_eq!(index.len(), 0);
}
#[cfg(feature = "rand-std")]
impl PartialMerkleTree {
/// Flip one bit in one of the hashes - this should break the authentication
fn damage(&mut self, rng: &mut ThreadRng) {
let n = rng.gen_range(0..self.hashes.len());
let bit = rng.gen::<u8>();
let hashes = &mut self.hashes;
let mut hash = hashes[n].to_byte_array();
hash[(bit >> 3) as usize] ^= 1 << (bit & 7);
hashes[n] = TxMerkleNode::from_slice(&hash).unwrap();
}
}
/// Returns a real block (0000000000013b8ab2cd513b0261a14096412195a72a0c4827d229dcc7e0f7af)
/// with 9 txs.
fn get_block_13b8a() -> Block {
use hex::FromHex;
let block_hex = include_str!("../../tests/data/block_13b8a.hex");
deserialize(&Vec::from_hex(block_hex).unwrap()).unwrap()
}
macro_rules! check_calc_tree_width {
($($test_name:ident, $num_transactions:literal, $height:literal, $expected_width:literal);* $(;)?) => {
$(
#[test]
fn $test_name() {
let pmt = PartialMerkleTree {
num_transactions: $num_transactions,
bits: vec![],
hashes: vec![],
};
let got = pmt.calc_tree_width($height);
assert_eq!(got, $expected_width)
}
)*
}
}
// tree_width_<id> <num txs> <height> <expected_width>
//
// height 0 is the bottom of the tree, where the leaves are.
check_calc_tree_width! {
tree_width_01, 1, 0, 1;
//
tree_width_02, 2, 0, 2;
tree_width_03, 2, 1, 1;
//
tree_width_04, 3, 0, 3;
tree_width_05, 3, 1, 2;
tree_width_06, 3, 2, 1;
//
tree_width_07, 4, 0, 4;
tree_width_08, 4, 1, 2;
tree_width_09, 4, 2, 1;
//
tree_width_10, 5, 0, 5;
tree_width_11, 5, 1, 3;
tree_width_12, 5, 2, 2;
tree_width_13, 5, 3, 1;
//
tree_width_14, 6, 0, 6;
tree_width_15, 6, 1, 3;
tree_width_16, 6, 2, 2;
tree_width_17, 6, 3, 1;
//
tree_width_18, 7, 0, 7;
tree_width_19, 7, 1, 4;
tree_width_20, 7, 2, 2;
tree_width_21, 7, 3, 1;
}
#[test]
fn regression_2606() {
// Attempt
let bytes = hex!(
"000006000000000000000004ee00000004c7f1ccb1000000ffff000000010000\
0000ffffffffff1f000000000400000000000002000000000500000000000000\
000000000300000000000003000000000200000000ff00000000c7f1ccb10407\
00000000000000ccb100c76538b100000004bfa9c251681b1b00040000000025\
00000004bfaac251681b1b25\
"
);
let deser = crate::consensus::deserialize::<MerkleBlock>(&bytes);
assert!(deser.is_err());
}
}