1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
use crate::cipher;
use crate::error::TLSError;
use crate::key;
#[cfg(feature = "logging")]
use crate::log::{debug, error, warn};
use crate::msgs::base::Payload;
use crate::msgs::codec::Codec;
use crate::msgs::deframer::MessageDeframer;
use crate::msgs::enums::{AlertDescription, AlertLevel, ContentType, ProtocolVersion};
use crate::msgs::fragmenter::{MessageFragmenter, MAX_FRAGMENT_LEN};
use crate::msgs::hsjoiner::HandshakeJoiner;
use crate::msgs::message::{BorrowMessage, Message, MessagePayload};
use crate::prf;
use crate::quic;
use crate::rand;
use crate::record_layer;
use crate::suites::SupportedCipherSuite;
use crate::vecbuf::ChunkVecBuffer;
use ring;
use std::io::{Read, Write};
use std::collections::VecDeque;
use std::io;
/// Generalises `ClientSession` and `ServerSession`
pub trait Session: quic::QuicExt + Read + Write + Send + Sync {
/// Read TLS content from `rd`. This method does internal
/// buffering, so `rd` can supply TLS messages in arbitrary-
/// sized chunks (like a socket or pipe might).
///
/// You should call `process_new_packets` each time a call to
/// this function succeeds.
///
/// The returned error only relates to IO on `rd`. TLS-level
/// errors are emitted from `process_new_packets`.
///
/// This function returns `Ok(0)` when the underlying `rd` does
/// so. This typically happens when a socket is cleanly closed,
/// or a file is at EOF.
fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error>;
/// Writes TLS messages to `wr`.
///
/// On success the function returns `Ok(n)` where `n` is a number
/// of bytes written to `wr`, number of bytes after encoding and
/// encryption.
///
/// Note that after function return the session buffer maybe not
/// yet fully flushed. [`wants_write`] function can be used
/// to check if output buffer is not empty.
///
/// [`wants_write`]: #tymethod.wants_write
fn write_tls(&mut self, wr: &mut dyn Write) -> Result<usize, io::Error>;
/// Processes any new packets read by a previous call to `read_tls`.
/// Errors from this function relate to TLS protocol errors, and
/// are fatal to the session. Future calls after an error will do
/// no new work and will return the same error.
///
/// Success from this function can mean new plaintext is available:
/// obtain it using `read`.
fn process_new_packets(&mut self) -> Result<(), TLSError>;
/// Returns true if the caller should call `read_tls` as soon
/// as possible.
fn wants_read(&self) -> bool;
/// Returns true if the caller should call `write_tls` as soon
/// as possible.
fn wants_write(&self) -> bool;
/// Returns true if the session is currently perform the TLS
/// handshake. During this time plaintext written to the
/// session is buffered in memory.
fn is_handshaking(&self) -> bool;
/// Sets a limit on the internal buffers used to buffer
/// unsent plaintext (prior to completing the TLS handshake)
/// and unsent TLS records.
///
/// By default, there is no limit. The limit can be set
/// at any time, even if the current buffer use is higher.
fn set_buffer_limit(&mut self, limit: usize);
/// Queues a close_notify fatal alert to be sent in the next
/// `write_tls` call. This informs the peer that the
/// connection is being closed.
fn send_close_notify(&mut self);
/// Retrieves the certificate chain used by the peer to authenticate.
///
/// The order of the certificate chain is as it appears in the TLS
/// protocol: the first certificate relates to the peer, the
/// second certifies the first, the third certifies the second, and
/// so on.
///
/// For clients, this is the certificate chain of the server.
///
/// For servers, this is the certificate chain of the client,
/// if client authentication was completed.
///
/// The return value is None until this value is available.
fn get_peer_certificates(&self) -> Option<Vec<key::Certificate>>;
/// Retrieves the protocol agreed with the peer via ALPN.
///
/// A return value of None after handshake completion
/// means no protocol was agreed (because no protocols
/// were offered or accepted by the peer).
fn get_alpn_protocol(&self) -> Option<&[u8]>;
/// Retrieves the protocol version agreed with the peer.
///
/// This returns None until the version is agreed.
fn get_protocol_version(&self) -> Option<ProtocolVersion>;
/// Derives key material from the agreed session secrets.
///
/// This function fills in `output` with `output.len()` bytes of key
/// material derived from the master session secret using `label`
/// and `context` for diversification.
///
/// See RFC5705 for more details on what this does and is for.
///
/// For TLS1.3 connections, this function does not use the
/// "early" exporter at any point.
///
/// This function fails if called prior to the handshake completing;
/// check with `is_handshaking()` first.
fn export_keying_material(
&self,
output: &mut [u8],
label: &[u8],
context: Option<&[u8]>,
) -> Result<(), TLSError>;
/// Retrieves the ciphersuite agreed with the peer.
///
/// This returns None until the ciphersuite is agreed.
fn get_negotiated_ciphersuite(&self) -> Option<&'static SupportedCipherSuite>;
/// This function uses `io` to complete any outstanding IO for
/// this session.
///
/// This is a convenience function which solely uses other parts
/// of the public API.
///
/// What this means depends on the session state:
///
/// - If the session `is_handshaking()`, then IO is performed until
/// the handshake is complete.
/// - Otherwise, if `wants_write` is true, `write_tls` is invoked
/// until it is all written.
/// - Otherwise, if `wants_read` is true, `read_tls` is invoked
/// once.
///
/// The return value is the number of bytes read from and written
/// to `io`, respectively.
///
/// This function will block if `io` blocks.
///
/// Errors from TLS record handling (ie, from `process_new_packets()`)
/// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: Read + Write,
{
let until_handshaked = self.is_handshaking();
let mut eof = false;
let mut wrlen = 0;
let mut rdlen = 0;
loop {
while self.wants_write() {
wrlen += self.write_tls(io)?;
}
if !until_handshaked && wrlen > 0 {
return Ok((rdlen, wrlen));
}
if !eof && self.wants_read() {
match self.read_tls(io)? {
0 => eof = true,
n => rdlen += n,
}
}
match self.process_new_packets() {
Ok(_) => {}
Err(e) => {
// In case we have an alert to send describing this error,
// try a last-gasp write -- but don't predate the primary
// error.
let _ignored = self.write_tls(io);
return Err(io::Error::new(io::ErrorKind::InvalidData, e));
}
};
match (eof, until_handshaked, self.is_handshaking()) {
(_, true, false) => return Ok((rdlen, wrlen)),
(_, false, _) => return Ok((rdlen, wrlen)),
(true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
(..) => {}
}
}
}
}
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum Protocol {
Tls13,
#[cfg(feature = "quic")]
Quic,
}
#[derive(Clone, Debug)]
pub struct SessionRandoms {
pub we_are_client: bool,
pub client: [u8; 32],
pub server: [u8; 32],
}
static TLS12_DOWNGRADE_SENTINEL: &[u8] = &[0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44, 0x01];
impl SessionRandoms {
pub fn for_server() -> SessionRandoms {
let mut ret = SessionRandoms {
we_are_client: false,
client: [0u8; 32],
server: [0u8; 32],
};
rand::fill_random(&mut ret.server);
ret
}
pub fn for_client() -> SessionRandoms {
let mut ret = SessionRandoms {
we_are_client: true,
client: [0u8; 32],
server: [0u8; 32],
};
rand::fill_random(&mut ret.client);
ret
}
pub fn set_tls12_downgrade_marker(&mut self) {
assert!(!self.we_are_client);
self.server[24..]
.as_mut()
.write_all(TLS12_DOWNGRADE_SENTINEL)
.unwrap();
}
pub fn has_tls12_downgrade_marker(&mut self) -> bool {
assert!(self.we_are_client);
// both the server random and TLS12_DOWNGRADE_SENTINEL are
// public values and don't require constant time comparison
&self.server[24..] == TLS12_DOWNGRADE_SENTINEL
}
}
fn join_randoms(first: &[u8], second: &[u8]) -> [u8; 64] {
let mut randoms = [0u8; 64];
randoms
.as_mut()
.write_all(first)
.unwrap();
randoms[32..]
.as_mut()
.write_all(second)
.unwrap();
randoms
}
/// TLS1.2 per-session keying material
pub struct SessionSecrets {
pub randoms: SessionRandoms,
hash: &'static ring::digest::Algorithm,
pub master_secret: [u8; 48],
}
impl SessionSecrets {
pub fn new(
randoms: &SessionRandoms,
hashalg: &'static ring::digest::Algorithm,
pms: &[u8],
) -> SessionSecrets {
let mut ret = SessionSecrets {
randoms: randoms.clone(),
hash: hashalg,
master_secret: [0u8; 48],
};
let randoms = join_randoms(&ret.randoms.client, &ret.randoms.server);
prf::prf(
&mut ret.master_secret,
ret.hash,
pms,
b"master secret",
&randoms,
);
ret
}
pub fn new_ems(
randoms: &SessionRandoms,
hs_hash: &[u8],
hashalg: &'static ring::digest::Algorithm,
pms: &[u8],
) -> SessionSecrets {
let mut ret = SessionSecrets {
randoms: randoms.clone(),
hash: hashalg,
master_secret: [0u8; 48],
};
prf::prf(
&mut ret.master_secret,
ret.hash,
pms,
b"extended master secret",
hs_hash,
);
ret
}
pub fn new_resume(
randoms: &SessionRandoms,
hashalg: &'static ring::digest::Algorithm,
master_secret: &[u8],
) -> SessionSecrets {
let mut ret = SessionSecrets {
randoms: randoms.clone(),
hash: hashalg,
master_secret: [0u8; 48],
};
ret.master_secret
.as_mut()
.write_all(master_secret)
.unwrap();
ret
}
pub fn make_key_block(&self, len: usize) -> Vec<u8> {
let mut out = Vec::new();
out.resize(len, 0u8);
// NOTE: opposite order to above for no good reason.
// Don't design security protocols on drugs, kids.
let randoms = join_randoms(&self.randoms.server, &self.randoms.client);
prf::prf(
&mut out,
self.hash,
&self.master_secret,
b"key expansion",
&randoms,
);
out
}
pub fn get_master_secret(&self) -> Vec<u8> {
let mut ret = Vec::new();
ret.extend_from_slice(&self.master_secret);
ret
}
pub fn make_verify_data(&self, handshake_hash: &[u8], label: &[u8]) -> Vec<u8> {
let mut out = Vec::new();
out.resize(12, 0u8);
prf::prf(
&mut out,
self.hash,
&self.master_secret,
label,
handshake_hash,
);
out
}
pub fn client_verify_data(&self, handshake_hash: &[u8]) -> Vec<u8> {
self.make_verify_data(handshake_hash, b"client finished")
}
pub fn server_verify_data(&self, handshake_hash: &[u8]) -> Vec<u8> {
self.make_verify_data(handshake_hash, b"server finished")
}
pub fn export_keying_material(&self, output: &mut [u8], label: &[u8], context: Option<&[u8]>) {
let mut randoms = Vec::new();
randoms.extend_from_slice(&self.randoms.client);
randoms.extend_from_slice(&self.randoms.server);
if let Some(context) = context {
assert!(context.len() <= 0xffff);
(context.len() as u16).encode(&mut randoms);
randoms.extend_from_slice(context);
}
prf::prf(output, self.hash, &self.master_secret, label, &randoms)
}
}
// --- Common (to client and server) session functions ---
enum Limit {
Yes,
No,
}
/// For TLS1.3 middlebox compatibility mode, how to handle
/// a received ChangeCipherSpec message.
pub enum MiddleboxCCS {
/// process the message as normal
Process,
/// just ignore it
Drop,
}
pub struct SessionCommon {
pub negotiated_version: Option<ProtocolVersion>,
pub is_client: bool,
pub record_layer: record_layer::RecordLayer,
suite: Option<&'static SupportedCipherSuite>,
peer_eof: bool,
pub traffic: bool,
pub early_traffic: bool,
sent_fatal_alert: bool,
received_middlebox_ccs: bool,
pub message_deframer: MessageDeframer,
pub handshake_joiner: HandshakeJoiner,
pub message_fragmenter: MessageFragmenter,
received_plaintext: ChunkVecBuffer,
sendable_plaintext: ChunkVecBuffer,
pub sendable_tls: ChunkVecBuffer,
/// Protocol whose key schedule should be used. Unused for TLS < 1.3.
pub protocol: Protocol,
#[cfg(feature = "quic")]
pub(crate) quic: Quic,
}
impl SessionCommon {
pub fn new(mtu: Option<usize>, client: bool) -> SessionCommon {
SessionCommon {
negotiated_version: None,
is_client: client,
record_layer: record_layer::RecordLayer::new(),
suite: None,
peer_eof: false,
traffic: false,
early_traffic: false,
sent_fatal_alert: false,
received_middlebox_ccs: false,
message_deframer: MessageDeframer::new(),
handshake_joiner: HandshakeJoiner::new(),
message_fragmenter: MessageFragmenter::new(mtu.unwrap_or(MAX_FRAGMENT_LEN)),
received_plaintext: ChunkVecBuffer::new(),
sendable_plaintext: ChunkVecBuffer::new(),
sendable_tls: ChunkVecBuffer::new(),
protocol: Protocol::Tls13,
#[cfg(feature = "quic")]
quic: Quic::new(),
}
}
pub fn is_tls13(&self) -> bool {
match self.negotiated_version {
Some(ProtocolVersion::TLSv1_3) => true,
_ => false,
}
}
pub fn get_suite(&self) -> Option<&'static SupportedCipherSuite> {
self.suite
}
pub fn get_suite_assert(&self) -> &'static SupportedCipherSuite {
self.suite.as_ref().unwrap()
}
pub fn set_suite(&mut self, suite: &'static SupportedCipherSuite) -> bool {
match self.suite {
None => {
self.suite = Some(suite);
true
}
Some(s) if s == suite => {
self.suite = Some(suite);
true
}
_ => false,
}
}
pub fn filter_tls13_ccs(&mut self, msg: &Message) -> Result<MiddleboxCCS, TLSError> {
// pass message to handshake state machine if any of these are true:
// - TLS1.2 (where it's part of the state machine),
// - prior to determining the version (it's illegal as a first message)
// - if it's not a CCS at all
// - if we've finished the handshake
if !self.is_tls13() || !msg.is_content_type(ContentType::ChangeCipherSpec) || self.traffic {
return Ok(MiddleboxCCS::Process);
}
if self.received_middlebox_ccs {
Err(TLSError::PeerMisbehavedError(
"illegal middlebox CCS received".into(),
))
} else {
self.received_middlebox_ccs = true;
Ok(MiddleboxCCS::Drop)
}
}
pub fn decrypt_incoming(&mut self, encr: Message) -> Result<Message, TLSError> {
if self
.record_layer
.wants_close_before_decrypt()
{
self.send_close_notify();
}
let rc = self.record_layer.decrypt_incoming(encr);
if let Err(TLSError::PeerSentOversizedRecord) = rc {
self.send_fatal_alert(AlertDescription::RecordOverflow);
}
rc
}
pub fn has_readable_plaintext(&self) -> bool {
!self.received_plaintext.is_empty()
}
pub fn set_buffer_limit(&mut self, limit: usize) {
self.sendable_plaintext.set_limit(limit);
self.sendable_tls.set_limit(limit);
}
pub fn process_alert(&mut self, msg: Message) -> Result<(), TLSError> {
if let MessagePayload::Alert(ref alert) = msg.payload {
// Reject unknown AlertLevels.
if let AlertLevel::Unknown(_) = alert.level {
self.send_fatal_alert(AlertDescription::IllegalParameter);
}
// If we get a CloseNotify, make a note to declare EOF to our
// caller.
if alert.description == AlertDescription::CloseNotify {
self.peer_eof = true;
return Ok(());
}
// Warnings are nonfatal for TLS1.2, but outlawed in TLS1.3
// (except, for no good reason, user_cancelled).
if alert.level == AlertLevel::Warning {
if self.is_tls13() && alert.description != AlertDescription::UserCanceled {
self.send_fatal_alert(AlertDescription::DecodeError);
} else {
warn!("TLS alert warning received: {:#?}", msg);
return Ok(());
}
}
error!("TLS alert received: {:#?}", msg);
Err(TLSError::AlertReceived(alert.description))
} else {
Err(TLSError::CorruptMessagePayload(ContentType::Alert))
}
}
/// Fragment `m`, encrypt the fragments, and then queue
/// the encrypted fragments for sending.
pub fn send_msg_encrypt(&mut self, m: Message) {
let mut plain_messages = VecDeque::new();
self.message_fragmenter
.fragment(m, &mut plain_messages);
for m in plain_messages {
self.send_single_fragment(m.to_borrowed());
}
}
/// Like send_msg_encrypt, but operate on an appdata directly.
fn send_appdata_encrypt(&mut self, payload: &[u8], limit: Limit) -> usize {
// Here, the limit on sendable_tls applies to encrypted data,
// but we're respecting it for plaintext data -- so we'll
// be out by whatever the cipher+record overhead is. That's a
// constant and predictable amount, so it's not a terrible issue.
let len = match limit {
Limit::Yes => self
.sendable_tls
.apply_limit(payload.len()),
Limit::No => payload.len(),
};
let mut plain_messages = VecDeque::new();
self.message_fragmenter.fragment_borrow(
ContentType::ApplicationData,
ProtocolVersion::TLSv1_2,
&payload[..len],
&mut plain_messages,
);
for m in plain_messages {
self.send_single_fragment(m);
}
len
}
fn send_single_fragment(&mut self, m: BorrowMessage) {
// Close connection once we start to run out of
// sequence space.
if self
.record_layer
.wants_close_before_encrypt()
{
self.send_close_notify();
}
// Refuse to wrap counter at all costs. This
// is basically untestable unfortunately.
if self.record_layer.encrypt_exhausted() {
return;
}
let em = self.record_layer.encrypt_outgoing(m);
self.queue_tls_message(em);
}
/// Are we done? ie, have we processed all received messages,
/// and received a close_notify to indicate that no new messages
/// will arrive?
pub fn connection_at_eof(&self) -> bool {
self.peer_eof && !self.message_deframer.has_pending()
}
/// Read TLS content from `rd`. This method does internal
/// buffering, so `rd` can supply TLS messages in arbitrary-
/// sized chunks (like a socket or pipe might).
pub fn read_tls(&mut self, rd: &mut dyn Read) -> io::Result<usize> {
self.message_deframer.read(rd)
}
pub fn write_tls(&mut self, wr: &mut dyn Write) -> io::Result<usize> {
self.sendable_tls.write_to(wr)
}
/// Send plaintext application data, fragmenting and
/// encrypting it as it goes out.
///
/// If internal buffers are too small, this function will not accept
/// all the data.
pub fn send_some_plaintext(&mut self, data: &[u8]) -> usize {
self.send_plain(data, Limit::Yes)
}
pub fn send_early_plaintext(&mut self, data: &[u8]) -> usize {
debug_assert!(self.early_traffic);
debug_assert!(self.record_layer.is_encrypting());
if data.is_empty() {
// Don't send empty fragments.
return 0;
}
self.send_appdata_encrypt(data, Limit::Yes)
}
/// Encrypt and send some plaintext `data`. `limit` controls
/// whether the per-session buffer limits apply.
///
/// Returns the number of bytes written from `data`: this might
/// be less than `data.len()` if buffer limits were exceeded.
fn send_plain(&mut self, data: &[u8], limit: Limit) -> usize {
if !self.traffic {
// If we haven't completed handshaking, buffer
// plaintext to send once we do.
let len = match limit {
Limit::Yes => self
.sendable_plaintext
.append_limited_copy(data),
Limit::No => self
.sendable_plaintext
.append(data.to_vec()),
};
return len;
}
debug_assert!(self.record_layer.is_encrypting());
if data.is_empty() {
// Don't send empty fragments.
return 0;
}
self.send_appdata_encrypt(data, limit)
}
pub fn start_traffic(&mut self) {
self.traffic = true;
self.flush_plaintext();
}
/// Send any buffered plaintext. Plaintext is buffered if
/// written during handshake.
pub fn flush_plaintext(&mut self) {
if !self.traffic {
return;
}
while !self.sendable_plaintext.is_empty() {
let buf = self.sendable_plaintext.take_one();
self.send_plain(&buf, Limit::No);
}
}
// Put m into sendable_tls for writing.
fn queue_tls_message(&mut self, m: Message) {
self.sendable_tls
.append(m.get_encoding());
}
/// Send a raw TLS message, fragmenting it if needed.
pub fn send_msg(&mut self, m: Message, must_encrypt: bool) {
#[cfg(feature = "quic")]
{
if let Protocol::Quic = self.protocol {
if let MessagePayload::Alert(alert) = m.payload {
self.quic.alert = Some(alert.description);
} else {
debug_assert!(
if let MessagePayload::Handshake(_) = m.payload {
true
} else {
false
},
"QUIC uses TLS for the cryptographic handshake only"
);
let mut bytes = Vec::new();
m.payload.encode(&mut bytes);
self.quic
.hs_queue
.push_back((must_encrypt, bytes));
}
return;
}
}
if !must_encrypt {
let mut to_send = VecDeque::new();
self.message_fragmenter
.fragment(m, &mut to_send);
for mm in to_send {
self.queue_tls_message(mm);
}
} else {
self.send_msg_encrypt(m);
}
}
pub fn take_received_plaintext(&mut self, bytes: Payload) {
self.received_plaintext.append(bytes.0);
}
pub fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let len = self.received_plaintext.read(buf)?;
if len == 0 && self.connection_at_eof() && self.received_plaintext.is_empty() {
return Err(io::Error::new(
io::ErrorKind::ConnectionAborted,
"CloseNotify alert received",
));
}
Ok(len)
}
pub fn start_encryption_tls12(&mut self, secrets: &SessionSecrets) {
let (dec, enc) = cipher::new_tls12(self.get_suite_assert(), secrets);
self.record_layer
.prepare_message_encrypter(enc);
self.record_layer
.prepare_message_decrypter(dec);
}
pub fn send_warning_alert(&mut self, desc: AlertDescription) {
warn!("Sending warning alert {:?}", desc);
self.send_warning_alert_no_log(desc);
}
pub fn send_fatal_alert(&mut self, desc: AlertDescription) {
warn!("Sending fatal alert {:?}", desc);
debug_assert!(!self.sent_fatal_alert);
let m = Message::build_alert(AlertLevel::Fatal, desc);
self.send_msg(m, self.record_layer.is_encrypting());
self.sent_fatal_alert = true;
}
pub fn send_close_notify(&mut self) {
debug!("Sending warning alert {:?}", AlertDescription::CloseNotify);
self.send_warning_alert_no_log(AlertDescription::CloseNotify);
}
fn send_warning_alert_no_log(&mut self, desc: AlertDescription) {
let m = Message::build_alert(AlertLevel::Warning, desc);
self.send_msg(m, self.record_layer.is_encrypting());
}
pub fn is_quic(&self) -> bool {
#[cfg(feature = "quic")]
{
self.protocol == Protocol::Quic
}
#[cfg(not(feature = "quic"))]
false
}
}
#[cfg(feature = "quic")]
pub(crate) struct Quic {
/// QUIC transport parameters received from the peer during the handshake
pub params: Option<Vec<u8>>,
pub alert: Option<AlertDescription>,
pub hs_queue: VecDeque<(bool, Vec<u8>)>,
pub early_secret: Option<ring::hkdf::Prk>,
pub hs_secrets: Option<quic::Secrets>,
pub traffic_secrets: Option<quic::Secrets>,
/// Whether keys derived from traffic_secrets have been passed to the QUIC implementation
pub returned_traffic_keys: bool,
}
#[cfg(feature = "quic")]
impl Quic {
pub fn new() -> Self {
Self {
params: None,
alert: None,
hs_queue: VecDeque::new(),
early_secret: None,
hs_secrets: None,
traffic_secrets: None,
returned_traffic_keys: false,
}
}
}