1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
// SPDX-License-Identifier: CC0-1.0

//! Bitcoin scripts.
//!
//! *[See also the `Script` type](Script).*
//!
//! This module provides the structures and functions needed to support scripts.
//!
//! <details>
//! <summary>What is Bitcoin script</summary>
//!
//! Scripts define Bitcoin's digital signature scheme: a signature is formed
//! from a script (the second half of which is defined by a coin to be spent,
//! and the first half provided by the spending transaction), and is valid iff
//! the script leaves `TRUE` on the stack after being evaluated. Bitcoin's
//! script is a stack-based assembly language similar in spirit to [Forth].
//!
//! Script is represented as a sequence of bytes on the wire, each byte representing an operation,
//! or data to be pushed on the stack.
//!
//! See [Bitcoin Wiki: Script][wiki-script] for more information.
//!
//! [Forth]: https://en.wikipedia.org/wiki/Forth_(programming_language)
//!
//! [wiki-script]: https://en.bitcoin.it/wiki/Script
//! </details>
//!
//! In this library we chose to keep the byte representation in memory and decode opcodes only when
//! processing the script. This is similar to Rust choosing to represent strings as UTF-8-encoded
//! bytes rather than slice of `char`s. In both cases the individual items can have different sizes
//! and forcing them to be larger would waste memory and, in case of Bitcoin script, even some
//! performance (forcing allocations).
//!
//! ## `Script` vs `ScriptBuf` vs `Builder`
//!
//! These are the most important types in this module and they are quite similar, so it may seem
//! confusing what the differences are. `Script` is an unsized type much like `str` or `Path` are
//! and `ScriptBuf` is an owned counterpart to `Script` just like `String` is an owned counterpart
//! to `str`.
//!
//! However it is common to construct an owned script and then pass it around. For this case a
//! builder API is more convenient. To support this we provide `Builder` type which is very similar
//! to `ScriptBuf` but its methods take `self` instead of `&mut self` and return `Self`. It also
//! contains a cache that may make some modifications faster. This cache is usually not needed
//! outside of creating the script.
//!
//! At the time of writing there's only one operation using the cache - `push_verify`, so the cache
//! is minimal but we may extend it in the future if needed.

mod borrowed;
mod builder;
mod instruction;
mod owned;
mod push_bytes;
#[cfg(test)]
mod tests;
pub mod witness_program;
pub mod witness_version;

use alloc::rc::Rc;
#[cfg(any(not(rust_v_1_60), target_has_atomic = "ptr"))]
use alloc::sync::Arc;
use core::cmp::Ordering;
use core::fmt;
use core::ops::{Deref, DerefMut};

use hashes::{hash160, sha256};
use io::{Read, Write};

use crate::blockdata::opcodes::all::*;
use crate::blockdata::opcodes::{self, Opcode};
use crate::consensus::{encode, Decodable, Encodable};
use crate::internal_macros::impl_asref_push_bytes;
use crate::prelude::*;
use crate::OutPoint;

#[rustfmt::skip]                // Keep public re-exports separate.
#[doc(inline)]
pub use self::{
    borrowed::*,
    builder::*,
    instruction::*,
    owned::*,
    push_bytes::*,
};

hashes::hash_newtype! {
    /// A hash of Bitcoin Script bytecode.
    pub struct ScriptHash(hash160::Hash);
    /// SegWit version of a Bitcoin Script bytecode hash.
    pub struct WScriptHash(sha256::Hash);
}
impl_asref_push_bytes!(ScriptHash, WScriptHash);

impl From<ScriptBuf> for ScriptHash {
    fn from(script: ScriptBuf) -> ScriptHash { script.script_hash() }
}

impl From<&ScriptBuf> for ScriptHash {
    fn from(script: &ScriptBuf) -> ScriptHash { script.script_hash() }
}

impl From<&Script> for ScriptHash {
    fn from(script: &Script) -> ScriptHash { script.script_hash() }
}

impl From<ScriptBuf> for WScriptHash {
    fn from(script: ScriptBuf) -> WScriptHash { script.wscript_hash() }
}

impl From<&ScriptBuf> for WScriptHash {
    fn from(script: &ScriptBuf) -> WScriptHash { script.wscript_hash() }
}

impl From<&Script> for WScriptHash {
    fn from(script: &Script) -> WScriptHash { script.wscript_hash() }
}

/// Encodes an integer in script(minimal CScriptNum) format.
///
/// Writes bytes into the buffer and returns the number of bytes written.
///
/// Note that `write_scriptint`/`read_scriptint` do not roundtrip if the value written requires
/// more than 4 bytes, this is in line with Bitcoin Core (see [`CScriptNum::serialize`]).
///
/// [`CScriptNum::serialize`]: <https://github.com/bitcoin/bitcoin/blob/8ae2808a4354e8dcc697f76bacc5e2f2befe9220/src/script/script.h#L345>
pub fn write_scriptint(out: &mut [u8; 8], n: i64) -> usize {
    let mut len = 0;
    if n == 0 {
        return len;
    }

    let neg = n < 0;

    let mut abs = n.unsigned_abs();
    while abs > 0xFF {
        out[len] = (abs & 0xFF) as u8;
        len += 1;
        abs >>= 8;
    }
    // If the number's value causes the sign bit to be set, we need an extra
    // byte to get the correct value and correct sign bit
    if abs & 0x80 != 0 {
        out[len] = abs as u8;
        len += 1;
        out[len] = if neg { 0x80u8 } else { 0u8 };
        len += 1;
    }
    // Otherwise we just set the sign bit ourselves
    else {
        abs |= if neg { 0x80 } else { 0 };
        out[len] = abs as u8;
        len += 1;
    }
    len
}

/// Decodes an integer in script(minimal CScriptNum) format.
///
/// Notice that this fails on overflow: the result is the same as in
/// bitcoind, that only 4-byte signed-magnitude values may be read as
/// numbers. They can be added or subtracted (and a long time ago,
/// multiplied and divided), and this may result in numbers which
/// can't be written out in 4 bytes or less. This is ok! The number
/// just can't be read as a number again.
/// This is a bit crazy and subtle, but it makes sense: you can load
/// 32-bit numbers and do anything with them, which back when mult/div
/// was allowed, could result in up to a 64-bit number. We don't want
/// overflow since that's surprising --- and we don't want numbers that
/// don't fit in 64 bits (for efficiency on modern processors) so we
/// simply say, anything in excess of 32 bits is no longer a number.
/// This is basically a ranged type implementation.
///
/// This code is based on the `CScriptNum` constructor in Bitcoin Core (see `script.h`).
pub fn read_scriptint(v: &[u8]) -> Result<i64, Error> {
    let last = match v.last() {
        Some(last) => last,
        None => return Ok(0),
    };
    if v.len() > 4 {
        return Err(Error::NumericOverflow);
    }
    // Comment and code copied from Bitcoin Core:
    // https://github.com/bitcoin/bitcoin/blob/447f50e4aed9a8b1d80e1891cda85801aeb80b4e/src/script/script.h#L247-L262
    // If the most-significant-byte - excluding the sign bit - is zero
    // then we're not minimal. Note how this test also rejects the
    // negative-zero encoding, 0x80.
    if (*last & 0x7f) == 0 {
        // One exception: if there's more than one byte and the most
        // significant bit of the second-most-significant-byte is set
        // it would conflict with the sign bit. An example of this case
        // is +-255, which encode to 0xff00 and 0xff80 respectively.
        // (big-endian).
        if v.len() <= 1 || (v[v.len() - 2] & 0x80) == 0 {
            return Err(Error::NonMinimalPush);
        }
    }

    Ok(scriptint_parse(v))
}

/// Decodes an integer in script format without non-minimal error.
///
/// The overflow error for slices over 4 bytes long is still there.
/// See [`read_scriptint`] for a description of some subtleties of
/// this function.
pub fn read_scriptint_non_minimal(v: &[u8]) -> Result<i64, Error> {
    if v.is_empty() {
        return Ok(0);
    }
    if v.len() > 4 {
        return Err(Error::NumericOverflow);
    }

    Ok(scriptint_parse(v))
}

// Caller to guarantee that `v` is not empty.
fn scriptint_parse(v: &[u8]) -> i64 {
    let (mut ret, sh) = v.iter().fold((0, 0), |(acc, sh), n| (acc + ((*n as i64) << sh), sh + 8));
    if v[v.len() - 1] & 0x80 != 0 {
        ret &= (1 << (sh - 1)) - 1;
        ret = -ret;
    }
    ret
}

/// Decodes a boolean.
///
/// This is like "`read_scriptint` then map 0 to false and everything
/// else as true", except that the overflow rules don't apply.
#[inline]
pub fn read_scriptbool(v: &[u8]) -> bool {
    match v.split_last() {
        Some((last, rest)) => !((last & !0x80 == 0x00) && rest.iter().all(|&b| b == 0)),
        None => false,
    }
}

// We internally use implementation based on iterator so that it automatically advances as needed
// Errors are same as above, just different type.
fn read_uint_iter(data: &mut core::slice::Iter<'_, u8>, size: usize) -> Result<usize, UintError> {
    if data.len() < size {
        Err(UintError::EarlyEndOfScript)
    } else if size > usize::from(u16::MAX / 8) {
        // Casting to u32 would overflow
        Err(UintError::NumericOverflow)
    } else {
        let mut ret = 0;
        for (i, item) in data.take(size).enumerate() {
            ret = usize::from(*item)
                // Casting is safe because we checked above to not repeat the same check in a loop
                .checked_shl((i * 8) as u32)
                .ok_or(UintError::NumericOverflow)?
                .checked_add(ret)
                .ok_or(UintError::NumericOverflow)?;
        }
        Ok(ret)
    }
}

fn opcode_to_verify(opcode: Option<Opcode>) -> Option<Opcode> {
    opcode.and_then(|opcode| match opcode {
        OP_EQUAL => Some(OP_EQUALVERIFY),
        OP_NUMEQUAL => Some(OP_NUMEQUALVERIFY),
        OP_CHECKSIG => Some(OP_CHECKSIGVERIFY),
        OP_CHECKMULTISIG => Some(OP_CHECKMULTISIGVERIFY),
        _ => None,
    })
}

// We keep all the `Script` and `ScriptBuf` impls together since its easier to see side-by-side.

impl From<ScriptBuf> for Box<Script> {
    fn from(v: ScriptBuf) -> Self { v.into_boxed_script() }
}

impl From<ScriptBuf> for Cow<'_, Script> {
    fn from(value: ScriptBuf) -> Self { Cow::Owned(value) }
}

impl<'a> From<Cow<'a, Script>> for ScriptBuf {
    fn from(value: Cow<'a, Script>) -> Self {
        match value {
            Cow::Owned(owned) => owned,
            Cow::Borrowed(borrwed) => borrwed.into(),
        }
    }
}

impl<'a> From<Cow<'a, Script>> for Box<Script> {
    fn from(value: Cow<'a, Script>) -> Self {
        match value {
            Cow::Owned(owned) => owned.into(),
            Cow::Borrowed(borrwed) => borrwed.into(),
        }
    }
}

impl<'a> From<&'a Script> for Box<Script> {
    fn from(value: &'a Script) -> Self { value.to_owned().into() }
}

impl<'a> From<&'a Script> for ScriptBuf {
    fn from(value: &'a Script) -> Self { value.to_owned() }
}

impl<'a> From<&'a Script> for Cow<'a, Script> {
    fn from(value: &'a Script) -> Self { Cow::Borrowed(value) }
}

/// Note: This will fail to compile on old Rust for targets that don't support atomics
#[cfg(any(not(rust_v_1_60), target_has_atomic = "ptr"))]
impl<'a> From<&'a Script> for Arc<Script> {
    fn from(value: &'a Script) -> Self {
        let rw: *const [u8] = Arc::into_raw(Arc::from(&value.0));
        // SAFETY: copied from `std`
        // The pointer was just created from an Arc without deallocating
        // Casting a slice to a transparent struct wrapping that slice is sound (same
        // layout).
        unsafe { Arc::from_raw(rw as *const Script) }
    }
}

impl<'a> From<&'a Script> for Rc<Script> {
    fn from(value: &'a Script) -> Self {
        let rw: *const [u8] = Rc::into_raw(Rc::from(&value.0));
        // SAFETY: copied from `std`
        // The pointer was just created from an Rc without deallocating
        // Casting a slice to a transparent struct wrapping that slice is sound (same
        // layout).
        unsafe { Rc::from_raw(rw as *const Script) }
    }
}

impl From<Vec<u8>> for ScriptBuf {
    fn from(v: Vec<u8>) -> Self { ScriptBuf(v) }
}

impl From<ScriptBuf> for Vec<u8> {
    fn from(v: ScriptBuf) -> Self { v.0 }
}

impl AsRef<Script> for Script {
    #[inline]
    fn as_ref(&self) -> &Script { self }
}

impl AsRef<Script> for ScriptBuf {
    fn as_ref(&self) -> &Script { self }
}

impl AsRef<[u8]> for Script {
    #[inline]
    fn as_ref(&self) -> &[u8] { self.as_bytes() }
}

impl AsRef<[u8]> for ScriptBuf {
    fn as_ref(&self) -> &[u8] { self.as_bytes() }
}

impl AsMut<Script> for Script {
    fn as_mut(&mut self) -> &mut Script { self }
}

impl AsMut<Script> for ScriptBuf {
    fn as_mut(&mut self) -> &mut Script { self }
}

impl AsMut<[u8]> for Script {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] { self.as_mut_bytes() }
}

impl AsMut<[u8]> for ScriptBuf {
    fn as_mut(&mut self) -> &mut [u8] { self.as_mut_bytes() }
}

impl fmt::Debug for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str("Script(")?;
        self.fmt_asm(f)?;
        f.write_str(")")
    }
}

impl fmt::Debug for ScriptBuf {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.as_script(), f) }
}

impl fmt::Display for Script {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.fmt_asm(f) }
}

impl fmt::Display for ScriptBuf {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self.as_script(), f) }
}

impl fmt::LowerHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::LowerHex::fmt(&self.as_bytes().as_hex(), f)
    }
}

impl fmt::LowerHex for ScriptBuf {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self.as_script(), f) }
}

impl fmt::UpperHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::UpperHex::fmt(&self.as_bytes().as_hex(), f)
    }
}

impl fmt::UpperHex for ScriptBuf {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(self.as_script(), f) }
}

impl Deref for ScriptBuf {
    type Target = Script;

    fn deref(&self) -> &Self::Target { Script::from_bytes(&self.0) }
}

impl DerefMut for ScriptBuf {
    fn deref_mut(&mut self) -> &mut Self::Target { Script::from_bytes_mut(&mut self.0) }
}

impl Borrow<Script> for ScriptBuf {
    fn borrow(&self) -> &Script { self }
}

impl BorrowMut<Script> for ScriptBuf {
    fn borrow_mut(&mut self) -> &mut Script { self }
}

impl PartialEq<ScriptBuf> for Script {
    fn eq(&self, other: &ScriptBuf) -> bool { self.eq(other.as_script()) }
}

impl PartialEq<Script> for ScriptBuf {
    fn eq(&self, other: &Script) -> bool { self.as_script().eq(other) }
}

impl PartialOrd<Script> for ScriptBuf {
    fn partial_cmp(&self, other: &Script) -> Option<Ordering> {
        self.as_script().partial_cmp(other)
    }
}

impl PartialOrd<ScriptBuf> for Script {
    fn partial_cmp(&self, other: &ScriptBuf) -> Option<Ordering> {
        self.partial_cmp(other.as_script())
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for Script {
    /// User-facing serialization for `Script`.
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        if serializer.is_human_readable() {
            serializer.collect_str(&format_args!("{:x}", self))
        } else {
            serializer.serialize_bytes(self.as_bytes())
        }
    }
}

/// Can only deserialize borrowed bytes.
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for &'de Script {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        if deserializer.is_human_readable() {
            use crate::serde::de::Error;

            return Err(D::Error::custom(
                "deserialization of `&Script` from human-readable formats is not possible",
            ));
        }

        struct Visitor;
        impl<'de> serde::de::Visitor<'de> for Visitor {
            type Value = &'de Script;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("borrowed bytes")
            }

            fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
            where
                E: serde::de::Error,
            {
                Ok(Script::from_bytes(v))
            }
        }
        deserializer.deserialize_bytes(Visitor)
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for ScriptBuf {
    /// User-facing serialization for `Script`.
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        (**self).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for ScriptBuf {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        use core::fmt::Formatter;

        use hex::FromHex;

        if deserializer.is_human_readable() {
            struct Visitor;
            impl<'de> serde::de::Visitor<'de> for Visitor {
                type Value = ScriptBuf;

                fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
                    formatter.write_str("a script hex")
                }

                fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
                where
                    E: serde::de::Error,
                {
                    let v = Vec::from_hex(v).map_err(E::custom)?;
                    Ok(ScriptBuf::from(v))
                }
            }
            deserializer.deserialize_str(Visitor)
        } else {
            struct BytesVisitor;

            impl<'de> serde::de::Visitor<'de> for BytesVisitor {
                type Value = ScriptBuf;

                fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
                    formatter.write_str("a script Vec<u8>")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: serde::de::Error,
                {
                    Ok(ScriptBuf::from(v.to_vec()))
                }

                fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
                where
                    E: serde::de::Error,
                {
                    Ok(ScriptBuf::from(v))
                }
            }
            deserializer.deserialize_byte_buf(BytesVisitor)
        }
    }
}

impl Encodable for Script {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        crate::consensus::encode::consensus_encode_with_size(&self.0, w)
    }
}

impl Encodable for ScriptBuf {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        self.0.consensus_encode(w)
    }
}

impl Decodable for ScriptBuf {
    #[inline]
    fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
        r: &mut R,
    ) -> Result<Self, encode::Error> {
        Ok(ScriptBuf(Decodable::consensus_decode_from_finite_reader(r)?))
    }
}

/// Writes the assembly decoding of the script bytes to the formatter.
pub(super) fn bytes_to_asm_fmt(script: &[u8], f: &mut dyn fmt::Write) -> fmt::Result {
    // This has to be a macro because it needs to break the loop
    macro_rules! read_push_data_len {
        ($iter:expr, $len:literal, $formatter:expr) => {
            match read_uint_iter($iter, $len) {
                Ok(n) => {
                    n
                },
                Err(UintError::EarlyEndOfScript) => {
                    $formatter.write_str("<unexpected end>")?;
                    break;
                }
                // We got the data in a slice which implies it being shorter than `usize::MAX`
                // So if we got overflow, we can confidently say the number is higher than length of
                // the slice even though we don't know the exact number. This implies attempt to push
                // past end.
                Err(UintError::NumericOverflow) => {
                    $formatter.write_str("<push past end>")?;
                    break;
                }
            }
        }
    }

    let mut iter = script.iter();
    // Was at least one opcode emitted?
    let mut at_least_one = false;
    // `iter` needs to be borrowed in `read_push_data_len`, so we have to use `while let` instead
    // of `for`.
    while let Some(byte) = iter.next() {
        let opcode = Opcode::from(*byte);

        let data_len = if let opcodes::Class::PushBytes(n) =
            opcode.classify(opcodes::ClassifyContext::Legacy)
        {
            n as usize
        } else {
            match opcode {
                OP_PUSHDATA1 => {
                    // side effects: may write and break from the loop
                    read_push_data_len!(&mut iter, 1, f)
                }
                OP_PUSHDATA2 => {
                    // side effects: may write and break from the loop
                    read_push_data_len!(&mut iter, 2, f)
                }
                OP_PUSHDATA4 => {
                    // side effects: may write and break from the loop
                    read_push_data_len!(&mut iter, 4, f)
                }
                _ => 0,
            }
        };

        if at_least_one {
            f.write_str(" ")?;
        } else {
            at_least_one = true;
        }
        // Write the opcode
        if opcode == OP_PUSHBYTES_0 {
            f.write_str("OP_0")?;
        } else {
            write!(f, "{:?}", opcode)?;
        }
        // Write any pushdata
        if data_len > 0 {
            f.write_str(" ")?;
            if data_len <= iter.len() {
                for ch in iter.by_ref().take(data_len) {
                    write!(f, "{:02x}", ch)?;
                }
            } else {
                f.write_str("<push past end>")?;
                break;
            }
        }
    }
    Ok(())
}

/// Ways that a script might fail. Not everything is split up as
/// much as it could be; patches welcome if more detailed errors
/// would help you.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum Error {
    /// Something did a non-minimal push; for more information see
    /// <https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki#push-operators>
    NonMinimalPush,
    /// Some opcode expected a parameter but it was missing or truncated.
    EarlyEndOfScript,
    /// Tried to read an array off the stack as a number when it was more than 4 bytes.
    NumericOverflow,
    /// Can not find the spent output.
    UnknownSpentOutput(OutPoint),
    /// Can not serialize the spending transaction.
    Serialization,
}

internals::impl_from_infallible!(Error);

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use Error::*;

        match *self {
            NonMinimalPush => f.write_str("non-minimal datapush"),
            EarlyEndOfScript => f.write_str("unexpected end of script"),
            NumericOverflow =>
                f.write_str("numeric overflow (number on stack larger than 4 bytes)"),
            UnknownSpentOutput(ref point) => write!(f, "unknown spent output: {}", point),
            Serialization =>
                f.write_str("can not serialize the spending transaction in Transaction::verify()"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use Error::*;

        match *self {
            NonMinimalPush
            | EarlyEndOfScript
            | NumericOverflow
            | UnknownSpentOutput(_)
            | Serialization => None,
        }
    }
}

// Our internal error proves that we only return these two cases from `read_uint_iter`.
// Since it's private we don't bother with trait impls besides From.
enum UintError {
    EarlyEndOfScript,
    NumericOverflow,
}

internals::impl_from_infallible!(UintError);

impl From<UintError> for Error {
    fn from(error: UintError) -> Self {
        match error {
            UintError::EarlyEndOfScript => Error::EarlyEndOfScript,
            UintError::NumericOverflow => Error::NumericOverflow,
        }
    }
}