1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
// SPDX-License-Identifier: CC0-1.0
//! Bitcoin scripts.
//!
//! *[See also the `Script` type](Script).*
//!
//! This module provides the structures and functions needed to support scripts.
//!
//! <details>
//! <summary>What is Bitcoin script</summary>
//!
//! Scripts define Bitcoin's digital signature scheme: a signature is formed
//! from a script (the second half of which is defined by a coin to be spent,
//! and the first half provided by the spending transaction), and is valid iff
//! the script leaves `TRUE` on the stack after being evaluated. Bitcoin's
//! script is a stack-based assembly language similar in spirit to [Forth].
//!
//! Script is represented as a sequence of bytes on the wire, each byte representing an operation,
//! or data to be pushed on the stack.
//!
//! See [Bitcoin Wiki: Script][wiki-script] for more information.
//!
//! [Forth]: https://en.wikipedia.org/wiki/Forth_(programming_language)
//!
//! [wiki-script]: https://en.bitcoin.it/wiki/Script
//! </details>
//!
//! In this library we chose to keep the byte representation in memory and decode opcodes only when
//! processing the script. This is similar to Rust choosing to represent strings as UTF-8-encoded
//! bytes rather than slice of `char`s. In both cases the individual items can have different sizes
//! and forcing them to be larger would waste memory and, in case of Bitcoin script, even some
//! performance (forcing allocations).
//!
//! ## `Script` vs `ScriptBuf` vs `Builder`
//!
//! These are the most important types in this module and they are quite similar, so it may seem
//! confusing what the differences are. `Script` is an unsized type much like `str` or `Path` are
//! and `ScriptBuf` is an owned counterpart to `Script` just like `String` is an owned counterpart
//! to `str`.
//!
//! However it is common to construct an owned script and then pass it around. For this case a
//! builder API is more convenient. To support this we provide `Builder` type which is very similar
//! to `ScriptBuf` but its methods take `self` instead of `&mut self` and return `Self`. It also
//! contains a cache that may make some modifications faster. This cache is usually not needed
//! outside of creating the script.
//!
//! At the time of writing there's only one operation using the cache - `push_verify`, so the cache
//! is minimal but we may extend it in the future if needed.
mod borrowed;
mod builder;
mod instruction;
mod owned;
mod push_bytes;
#[cfg(test)]
mod tests;
pub mod witness_program;
pub mod witness_version;
use alloc::rc::Rc;
#[cfg(any(not(rust_v_1_60), target_has_atomic = "ptr"))]
use alloc::sync::Arc;
use core::cmp::Ordering;
use core::fmt;
use core::ops::{Deref, DerefMut};
use hashes::{hash160, sha256};
use io::{Read, Write};
use crate::blockdata::opcodes::all::*;
use crate::blockdata::opcodes::{self, Opcode};
use crate::consensus::{encode, Decodable, Encodable};
use crate::internal_macros::impl_asref_push_bytes;
use crate::prelude::*;
use crate::OutPoint;
#[rustfmt::skip] // Keep public re-exports separate.
#[doc(inline)]
pub use self::{
borrowed::*,
builder::*,
instruction::*,
owned::*,
push_bytes::*,
};
hashes::hash_newtype! {
/// A hash of Bitcoin Script bytecode.
pub struct ScriptHash(hash160::Hash);
/// SegWit version of a Bitcoin Script bytecode hash.
pub struct WScriptHash(sha256::Hash);
}
impl_asref_push_bytes!(ScriptHash, WScriptHash);
impl From<ScriptBuf> for ScriptHash {
fn from(script: ScriptBuf) -> ScriptHash { script.script_hash() }
}
impl From<&ScriptBuf> for ScriptHash {
fn from(script: &ScriptBuf) -> ScriptHash { script.script_hash() }
}
impl From<&Script> for ScriptHash {
fn from(script: &Script) -> ScriptHash { script.script_hash() }
}
impl From<ScriptBuf> for WScriptHash {
fn from(script: ScriptBuf) -> WScriptHash { script.wscript_hash() }
}
impl From<&ScriptBuf> for WScriptHash {
fn from(script: &ScriptBuf) -> WScriptHash { script.wscript_hash() }
}
impl From<&Script> for WScriptHash {
fn from(script: &Script) -> WScriptHash { script.wscript_hash() }
}
/// Encodes an integer in script(minimal CScriptNum) format.
///
/// Writes bytes into the buffer and returns the number of bytes written.
///
/// Note that `write_scriptint`/`read_scriptint` do not roundtrip if the value written requires
/// more than 4 bytes, this is in line with Bitcoin Core (see [`CScriptNum::serialize`]).
///
/// [`CScriptNum::serialize`]: <https://github.com/bitcoin/bitcoin/blob/8ae2808a4354e8dcc697f76bacc5e2f2befe9220/src/script/script.h#L345>
pub fn write_scriptint(out: &mut [u8; 8], n: i64) -> usize {
let mut len = 0;
if n == 0 {
return len;
}
let neg = n < 0;
let mut abs = n.unsigned_abs();
while abs > 0xFF {
out[len] = (abs & 0xFF) as u8;
len += 1;
abs >>= 8;
}
// If the number's value causes the sign bit to be set, we need an extra
// byte to get the correct value and correct sign bit
if abs & 0x80 != 0 {
out[len] = abs as u8;
len += 1;
out[len] = if neg { 0x80u8 } else { 0u8 };
len += 1;
}
// Otherwise we just set the sign bit ourselves
else {
abs |= if neg { 0x80 } else { 0 };
out[len] = abs as u8;
len += 1;
}
len
}
/// Decodes an integer in script(minimal CScriptNum) format.
///
/// Notice that this fails on overflow: the result is the same as in
/// bitcoind, that only 4-byte signed-magnitude values may be read as
/// numbers. They can be added or subtracted (and a long time ago,
/// multiplied and divided), and this may result in numbers which
/// can't be written out in 4 bytes or less. This is ok! The number
/// just can't be read as a number again.
/// This is a bit crazy and subtle, but it makes sense: you can load
/// 32-bit numbers and do anything with them, which back when mult/div
/// was allowed, could result in up to a 64-bit number. We don't want
/// overflow since that's surprising --- and we don't want numbers that
/// don't fit in 64 bits (for efficiency on modern processors) so we
/// simply say, anything in excess of 32 bits is no longer a number.
/// This is basically a ranged type implementation.
///
/// This code is based on the `CScriptNum` constructor in Bitcoin Core (see `script.h`).
pub fn read_scriptint(v: &[u8]) -> Result<i64, Error> {
let last = match v.last() {
Some(last) => last,
None => return Ok(0),
};
if v.len() > 4 {
return Err(Error::NumericOverflow);
}
// Comment and code copied from Bitcoin Core:
// https://github.com/bitcoin/bitcoin/blob/447f50e4aed9a8b1d80e1891cda85801aeb80b4e/src/script/script.h#L247-L262
// If the most-significant-byte - excluding the sign bit - is zero
// then we're not minimal. Note how this test also rejects the
// negative-zero encoding, 0x80.
if (*last & 0x7f) == 0 {
// One exception: if there's more than one byte and the most
// significant bit of the second-most-significant-byte is set
// it would conflict with the sign bit. An example of this case
// is +-255, which encode to 0xff00 and 0xff80 respectively.
// (big-endian).
if v.len() <= 1 || (v[v.len() - 2] & 0x80) == 0 {
return Err(Error::NonMinimalPush);
}
}
Ok(scriptint_parse(v))
}
/// Decodes an integer in script format without non-minimal error.
///
/// The overflow error for slices over 4 bytes long is still there.
/// See [`read_scriptint`] for a description of some subtleties of
/// this function.
pub fn read_scriptint_non_minimal(v: &[u8]) -> Result<i64, Error> {
if v.is_empty() {
return Ok(0);
}
if v.len() > 4 {
return Err(Error::NumericOverflow);
}
Ok(scriptint_parse(v))
}
// Caller to guarantee that `v` is not empty.
fn scriptint_parse(v: &[u8]) -> i64 {
let (mut ret, sh) = v.iter().fold((0, 0), |(acc, sh), n| (acc + ((*n as i64) << sh), sh + 8));
if v[v.len() - 1] & 0x80 != 0 {
ret &= (1 << (sh - 1)) - 1;
ret = -ret;
}
ret
}
/// Decodes a boolean.
///
/// This is like "`read_scriptint` then map 0 to false and everything
/// else as true", except that the overflow rules don't apply.
#[inline]
pub fn read_scriptbool(v: &[u8]) -> bool {
match v.split_last() {
Some((last, rest)) => !((last & !0x80 == 0x00) && rest.iter().all(|&b| b == 0)),
None => false,
}
}
// We internally use implementation based on iterator so that it automatically advances as needed
// Errors are same as above, just different type.
fn read_uint_iter(data: &mut core::slice::Iter<'_, u8>, size: usize) -> Result<usize, UintError> {
if data.len() < size {
Err(UintError::EarlyEndOfScript)
} else if size > usize::from(u16::MAX / 8) {
// Casting to u32 would overflow
Err(UintError::NumericOverflow)
} else {
let mut ret = 0;
for (i, item) in data.take(size).enumerate() {
ret = usize::from(*item)
// Casting is safe because we checked above to not repeat the same check in a loop
.checked_shl((i * 8) as u32)
.ok_or(UintError::NumericOverflow)?
.checked_add(ret)
.ok_or(UintError::NumericOverflow)?;
}
Ok(ret)
}
}
fn opcode_to_verify(opcode: Option<Opcode>) -> Option<Opcode> {
opcode.and_then(|opcode| match opcode {
OP_EQUAL => Some(OP_EQUALVERIFY),
OP_NUMEQUAL => Some(OP_NUMEQUALVERIFY),
OP_CHECKSIG => Some(OP_CHECKSIGVERIFY),
OP_CHECKMULTISIG => Some(OP_CHECKMULTISIGVERIFY),
_ => None,
})
}
// We keep all the `Script` and `ScriptBuf` impls together since its easier to see side-by-side.
impl From<ScriptBuf> for Box<Script> {
fn from(v: ScriptBuf) -> Self { v.into_boxed_script() }
}
impl From<ScriptBuf> for Cow<'_, Script> {
fn from(value: ScriptBuf) -> Self { Cow::Owned(value) }
}
impl<'a> From<Cow<'a, Script>> for ScriptBuf {
fn from(value: Cow<'a, Script>) -> Self {
match value {
Cow::Owned(owned) => owned,
Cow::Borrowed(borrwed) => borrwed.into(),
}
}
}
impl<'a> From<Cow<'a, Script>> for Box<Script> {
fn from(value: Cow<'a, Script>) -> Self {
match value {
Cow::Owned(owned) => owned.into(),
Cow::Borrowed(borrwed) => borrwed.into(),
}
}
}
impl<'a> From<&'a Script> for Box<Script> {
fn from(value: &'a Script) -> Self { value.to_owned().into() }
}
impl<'a> From<&'a Script> for ScriptBuf {
fn from(value: &'a Script) -> Self { value.to_owned() }
}
impl<'a> From<&'a Script> for Cow<'a, Script> {
fn from(value: &'a Script) -> Self { Cow::Borrowed(value) }
}
/// Note: This will fail to compile on old Rust for targets that don't support atomics
#[cfg(any(not(rust_v_1_60), target_has_atomic = "ptr"))]
impl<'a> From<&'a Script> for Arc<Script> {
fn from(value: &'a Script) -> Self {
let rw: *const [u8] = Arc::into_raw(Arc::from(&value.0));
// SAFETY: copied from `std`
// The pointer was just created from an Arc without deallocating
// Casting a slice to a transparent struct wrapping that slice is sound (same
// layout).
unsafe { Arc::from_raw(rw as *const Script) }
}
}
impl<'a> From<&'a Script> for Rc<Script> {
fn from(value: &'a Script) -> Self {
let rw: *const [u8] = Rc::into_raw(Rc::from(&value.0));
// SAFETY: copied from `std`
// The pointer was just created from an Rc without deallocating
// Casting a slice to a transparent struct wrapping that slice is sound (same
// layout).
unsafe { Rc::from_raw(rw as *const Script) }
}
}
impl From<Vec<u8>> for ScriptBuf {
fn from(v: Vec<u8>) -> Self { ScriptBuf(v) }
}
impl From<ScriptBuf> for Vec<u8> {
fn from(v: ScriptBuf) -> Self { v.0 }
}
impl AsRef<Script> for Script {
#[inline]
fn as_ref(&self) -> &Script { self }
}
impl AsRef<Script> for ScriptBuf {
fn as_ref(&self) -> &Script { self }
}
impl AsRef<[u8]> for Script {
#[inline]
fn as_ref(&self) -> &[u8] { self.as_bytes() }
}
impl AsRef<[u8]> for ScriptBuf {
fn as_ref(&self) -> &[u8] { self.as_bytes() }
}
impl AsMut<Script> for Script {
fn as_mut(&mut self) -> &mut Script { self }
}
impl AsMut<Script> for ScriptBuf {
fn as_mut(&mut self) -> &mut Script { self }
}
impl AsMut<[u8]> for Script {
#[inline]
fn as_mut(&mut self) -> &mut [u8] { self.as_mut_bytes() }
}
impl AsMut<[u8]> for ScriptBuf {
fn as_mut(&mut self) -> &mut [u8] { self.as_mut_bytes() }
}
impl fmt::Debug for Script {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("Script(")?;
self.fmt_asm(f)?;
f.write_str(")")
}
}
impl fmt::Debug for ScriptBuf {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.as_script(), f) }
}
impl fmt::Display for Script {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.fmt_asm(f) }
}
impl fmt::Display for ScriptBuf {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self.as_script(), f) }
}
impl fmt::LowerHex for Script {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::LowerHex::fmt(&self.as_bytes().as_hex(), f)
}
}
impl fmt::LowerHex for ScriptBuf {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self.as_script(), f) }
}
impl fmt::UpperHex for Script {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::UpperHex::fmt(&self.as_bytes().as_hex(), f)
}
}
impl fmt::UpperHex for ScriptBuf {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(self.as_script(), f) }
}
impl Deref for ScriptBuf {
type Target = Script;
fn deref(&self) -> &Self::Target { Script::from_bytes(&self.0) }
}
impl DerefMut for ScriptBuf {
fn deref_mut(&mut self) -> &mut Self::Target { Script::from_bytes_mut(&mut self.0) }
}
impl Borrow<Script> for ScriptBuf {
fn borrow(&self) -> &Script { self }
}
impl BorrowMut<Script> for ScriptBuf {
fn borrow_mut(&mut self) -> &mut Script { self }
}
impl PartialEq<ScriptBuf> for Script {
fn eq(&self, other: &ScriptBuf) -> bool { self.eq(other.as_script()) }
}
impl PartialEq<Script> for ScriptBuf {
fn eq(&self, other: &Script) -> bool { self.as_script().eq(other) }
}
impl PartialOrd<Script> for ScriptBuf {
fn partial_cmp(&self, other: &Script) -> Option<Ordering> {
self.as_script().partial_cmp(other)
}
}
impl PartialOrd<ScriptBuf> for Script {
fn partial_cmp(&self, other: &ScriptBuf) -> Option<Ordering> {
self.partial_cmp(other.as_script())
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for Script {
/// User-facing serialization for `Script`.
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
serializer.collect_str(&format_args!("{:x}", self))
} else {
serializer.serialize_bytes(self.as_bytes())
}
}
}
/// Can only deserialize borrowed bytes.
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for &'de Script {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
if deserializer.is_human_readable() {
use crate::serde::de::Error;
return Err(D::Error::custom(
"deserialization of `&Script` from human-readable formats is not possible",
));
}
struct Visitor;
impl<'de> serde::de::Visitor<'de> for Visitor {
type Value = &'de Script;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("borrowed bytes")
}
fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(Script::from_bytes(v))
}
}
deserializer.deserialize_bytes(Visitor)
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for ScriptBuf {
/// User-facing serialization for `Script`.
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
(**self).serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for ScriptBuf {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
use core::fmt::Formatter;
use hex::FromHex;
if deserializer.is_human_readable() {
struct Visitor;
impl<'de> serde::de::Visitor<'de> for Visitor {
type Value = ScriptBuf;
fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
formatter.write_str("a script hex")
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
let v = Vec::from_hex(v).map_err(E::custom)?;
Ok(ScriptBuf::from(v))
}
}
deserializer.deserialize_str(Visitor)
} else {
struct BytesVisitor;
impl<'de> serde::de::Visitor<'de> for BytesVisitor {
type Value = ScriptBuf;
fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
formatter.write_str("a script Vec<u8>")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(ScriptBuf::from(v.to_vec()))
}
fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(ScriptBuf::from(v))
}
}
deserializer.deserialize_byte_buf(BytesVisitor)
}
}
}
impl Encodable for Script {
#[inline]
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
crate::consensus::encode::consensus_encode_with_size(&self.0, w)
}
}
impl Encodable for ScriptBuf {
#[inline]
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
self.0.consensus_encode(w)
}
}
impl Decodable for ScriptBuf {
#[inline]
fn consensus_decode_from_finite_reader<R: Read + ?Sized>(
r: &mut R,
) -> Result<Self, encode::Error> {
Ok(ScriptBuf(Decodable::consensus_decode_from_finite_reader(r)?))
}
}
/// Writes the assembly decoding of the script bytes to the formatter.
pub(super) fn bytes_to_asm_fmt(script: &[u8], f: &mut dyn fmt::Write) -> fmt::Result {
// This has to be a macro because it needs to break the loop
macro_rules! read_push_data_len {
($iter:expr, $len:literal, $formatter:expr) => {
match read_uint_iter($iter, $len) {
Ok(n) => {
n
},
Err(UintError::EarlyEndOfScript) => {
$formatter.write_str("<unexpected end>")?;
break;
}
// We got the data in a slice which implies it being shorter than `usize::MAX`
// So if we got overflow, we can confidently say the number is higher than length of
// the slice even though we don't know the exact number. This implies attempt to push
// past end.
Err(UintError::NumericOverflow) => {
$formatter.write_str("<push past end>")?;
break;
}
}
}
}
let mut iter = script.iter();
// Was at least one opcode emitted?
let mut at_least_one = false;
// `iter` needs to be borrowed in `read_push_data_len`, so we have to use `while let` instead
// of `for`.
while let Some(byte) = iter.next() {
let opcode = Opcode::from(*byte);
let data_len = if let opcodes::Class::PushBytes(n) =
opcode.classify(opcodes::ClassifyContext::Legacy)
{
n as usize
} else {
match opcode {
OP_PUSHDATA1 => {
// side effects: may write and break from the loop
read_push_data_len!(&mut iter, 1, f)
}
OP_PUSHDATA2 => {
// side effects: may write and break from the loop
read_push_data_len!(&mut iter, 2, f)
}
OP_PUSHDATA4 => {
// side effects: may write and break from the loop
read_push_data_len!(&mut iter, 4, f)
}
_ => 0,
}
};
if at_least_one {
f.write_str(" ")?;
} else {
at_least_one = true;
}
// Write the opcode
if opcode == OP_PUSHBYTES_0 {
f.write_str("OP_0")?;
} else {
write!(f, "{:?}", opcode)?;
}
// Write any pushdata
if data_len > 0 {
f.write_str(" ")?;
if data_len <= iter.len() {
for ch in iter.by_ref().take(data_len) {
write!(f, "{:02x}", ch)?;
}
} else {
f.write_str("<push past end>")?;
break;
}
}
}
Ok(())
}
/// Ways that a script might fail. Not everything is split up as
/// much as it could be; patches welcome if more detailed errors
/// would help you.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum Error {
/// Something did a non-minimal push; for more information see
/// <https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki#push-operators>
NonMinimalPush,
/// Some opcode expected a parameter but it was missing or truncated.
EarlyEndOfScript,
/// Tried to read an array off the stack as a number when it was more than 4 bytes.
NumericOverflow,
/// Can not find the spent output.
UnknownSpentOutput(OutPoint),
/// Can not serialize the spending transaction.
Serialization,
}
internals::impl_from_infallible!(Error);
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use Error::*;
match *self {
NonMinimalPush => f.write_str("non-minimal datapush"),
EarlyEndOfScript => f.write_str("unexpected end of script"),
NumericOverflow =>
f.write_str("numeric overflow (number on stack larger than 4 bytes)"),
UnknownSpentOutput(ref point) => write!(f, "unknown spent output: {}", point),
Serialization =>
f.write_str("can not serialize the spending transaction in Transaction::verify()"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use Error::*;
match *self {
NonMinimalPush
| EarlyEndOfScript
| NumericOverflow
| UnknownSpentOutput(_)
| Serialization => None,
}
}
}
// Our internal error proves that we only return these two cases from `read_uint_iter`.
// Since it's private we don't bother with trait impls besides From.
enum UintError {
EarlyEndOfScript,
NumericOverflow,
}
internals::impl_from_infallible!(UintError);
impl From<UintError> for Error {
fn from(error: UintError) -> Self {
match error {
UintError::EarlyEndOfScript => Error::EarlyEndOfScript,
UintError::NumericOverflow => Error::NumericOverflow,
}
}
}