1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
use crate::error::TLSError;
use crate::key;
use crate::msgs::enums::{SignatureAlgorithm, SignatureScheme};
use ring::{
self,
signature::{self, EcdsaKeyPair, Ed25519KeyPair, RsaKeyPair},
};
use webpki;
use std::mem;
use std::sync::Arc;
/// An abstract signing key.
pub trait SigningKey: Send + Sync {
/// Choose a `SignatureScheme` from those offered.
///
/// Expresses the choice by returning something that implements `Signer`,
/// using the chosen scheme.
fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<dyn Signer>>;
/// What kind of key we have.
fn algorithm(&self) -> SignatureAlgorithm;
}
/// A thing that can sign a message.
pub trait Signer: Send + Sync {
/// Signs `message` using the selected scheme.
fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError>;
/// Reveals which scheme will be used when you call `sign()`.
fn get_scheme(&self) -> SignatureScheme;
}
/// A packaged-together certificate chain, matching `SigningKey` and
/// optional stapled OCSP response and/or SCT list.
#[derive(Clone)]
pub struct CertifiedKey {
/// The certificate chain.
pub cert: Vec<key::Certificate>,
/// The certified key.
pub key: Arc<Box<dyn SigningKey>>,
/// An optional OCSP response from the certificate issuer,
/// attesting to its continued validity.
pub ocsp: Option<Vec<u8>>,
/// An optional collection of SCTs from CT logs, proving the
/// certificate is included on those logs. This must be
/// a `SignedCertificateTimestampList` encoding; see RFC6962.
pub sct_list: Option<Vec<u8>>,
}
impl CertifiedKey {
/// Make a new CertifiedKey, with the given chain and key.
///
/// The cert chain must not be empty. The first certificate in the chain
/// must be the end-entity certificate.
pub fn new(cert: Vec<key::Certificate>, key: Arc<Box<dyn SigningKey>>) -> CertifiedKey {
CertifiedKey {
cert,
key,
ocsp: None,
sct_list: None,
}
}
/// The end-entity certificate.
pub fn end_entity_cert(&self) -> Result<&key::Certificate, ()> {
self.cert.get(0).ok_or(())
}
/// Steal ownership of the certificate chain.
pub fn take_cert(&mut self) -> Vec<key::Certificate> {
mem::replace(&mut self.cert, Vec::new())
}
/// Return true if there's an OCSP response.
pub fn has_ocsp(&self) -> bool {
self.ocsp.is_some()
}
/// Steal ownership of the OCSP response.
pub fn take_ocsp(&mut self) -> Option<Vec<u8>> {
mem::replace(&mut self.ocsp, None)
}
/// Return true if there's an SCT list.
pub fn has_sct_list(&self) -> bool {
self.sct_list.is_some()
}
/// Steal ownership of the SCT list.
pub fn take_sct_list(&mut self) -> Option<Vec<u8>> {
mem::replace(&mut self.sct_list, None)
}
/// Check the certificate chain for validity:
/// - it should be non-empty list
/// - the first certificate should be parsable as a x509v3,
/// - the first certificate should quote the given server name
/// (if provided)
///
/// These checks are not security-sensitive. They are the
/// *server* attempting to detect accidental misconfiguration.
pub fn cross_check_end_entity_cert(
&self,
name: Option<webpki::DNSNameRef>,
) -> Result<(), TLSError> {
// Always reject an empty certificate chain.
let end_entity_cert = self.end_entity_cert().map_err(|()| {
TLSError::General("No end-entity certificate in certificate chain".to_string())
})?;
// Reject syntactically-invalid end-entity certificates.
let end_entity_cert =
webpki::EndEntityCert::from(end_entity_cert.as_ref()).map_err(|_| {
TLSError::General(
"End-entity certificate in certificate \
chain is syntactically invalid"
.to_string(),
)
})?;
if let Some(name) = name {
// If SNI was offered then the certificate must be valid for
// that hostname. Note that this doesn't fully validate that the
// certificate is valid; it only validates that the name is one
// that the certificate is valid for, if the certificate is
// valid.
if end_entity_cert
.verify_is_valid_for_dns_name(name)
.is_err()
{
return Err(TLSError::General(
"The server certificate is not \
valid for the given name"
.to_string(),
));
}
}
Ok(())
}
}
/// Parse `der` as any supported key encoding/type, returning
/// the first which works.
pub fn any_supported_type(der: &key::PrivateKey) -> Result<Box<dyn SigningKey>, ()> {
if let Ok(rsa) = RSASigningKey::new(der) {
Ok(Box::new(rsa))
} else if let Ok(ecdsa) = any_ecdsa_type(der) {
Ok(ecdsa)
} else {
any_eddsa_type(der)
}
}
/// Parse `der` as any ECDSA key type, returning the first which works.
pub fn any_ecdsa_type(der: &key::PrivateKey) -> Result<Box<dyn SigningKey>, ()> {
if let Ok(ecdsa_p256) = ECDSASigningKey::new(
der,
SignatureScheme::ECDSA_NISTP256_SHA256,
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
) {
return Ok(Box::new(ecdsa_p256));
}
if let Ok(ecdsa_p384) = ECDSASigningKey::new(
der,
SignatureScheme::ECDSA_NISTP384_SHA384,
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
) {
return Ok(Box::new(ecdsa_p384));
}
Err(())
}
/// Parse `der` as any EdDSA key type, returning the first which works.
pub fn any_eddsa_type(der: &key::PrivateKey) -> Result<Box<dyn SigningKey>, ()> {
if let Ok(ed25519) = Ed25519SigningKey::new(der, SignatureScheme::ED25519) {
return Ok(Box::new(ed25519));
}
// TODO: Add support for Ed448
Err(())
}
/// A `SigningKey` for RSA-PKCS1 or RSA-PSS
pub struct RSASigningKey {
key: Arc<RsaKeyPair>,
}
static ALL_RSA_SCHEMES: &[SignatureScheme] = &[
SignatureScheme::RSA_PSS_SHA512,
SignatureScheme::RSA_PSS_SHA384,
SignatureScheme::RSA_PSS_SHA256,
SignatureScheme::RSA_PKCS1_SHA512,
SignatureScheme::RSA_PKCS1_SHA384,
SignatureScheme::RSA_PKCS1_SHA256,
];
impl RSASigningKey {
/// Make a new `RSASigningKey` from a DER encoding, in either
/// PKCS#1 or PKCS#8 format.
pub fn new(der: &key::PrivateKey) -> Result<RSASigningKey, ()> {
RsaKeyPair::from_der(&der.0)
.or_else(|_| RsaKeyPair::from_pkcs8(&der.0))
.map(|s| RSASigningKey { key: Arc::new(s) })
.map_err(|_| ())
}
}
impl SigningKey for RSASigningKey {
fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<dyn Signer>> {
ALL_RSA_SCHEMES
.iter()
.filter(|scheme| offered.contains(scheme))
.nth(0)
.map(|scheme| RSASigner::new(self.key.clone(), *scheme))
}
fn algorithm(&self) -> SignatureAlgorithm {
SignatureAlgorithm::RSA
}
}
struct RSASigner {
key: Arc<RsaKeyPair>,
scheme: SignatureScheme,
encoding: &'static dyn signature::RsaEncoding,
}
impl RSASigner {
fn new(key: Arc<RsaKeyPair>, scheme: SignatureScheme) -> Box<dyn Signer> {
let encoding: &dyn signature::RsaEncoding = match scheme {
SignatureScheme::RSA_PKCS1_SHA256 => &signature::RSA_PKCS1_SHA256,
SignatureScheme::RSA_PKCS1_SHA384 => &signature::RSA_PKCS1_SHA384,
SignatureScheme::RSA_PKCS1_SHA512 => &signature::RSA_PKCS1_SHA512,
SignatureScheme::RSA_PSS_SHA256 => &signature::RSA_PSS_SHA256,
SignatureScheme::RSA_PSS_SHA384 => &signature::RSA_PSS_SHA384,
SignatureScheme::RSA_PSS_SHA512 => &signature::RSA_PSS_SHA512,
_ => unreachable!(),
};
Box::new(RSASigner {
key,
scheme,
encoding,
})
}
}
impl Signer for RSASigner {
fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError> {
let mut sig = vec![0; self.key.public_modulus_len()];
let rng = ring::rand::SystemRandom::new();
self.key
.sign(self.encoding, &rng, message, &mut sig)
.map(|_| sig)
.map_err(|_| TLSError::General("signing failed".to_string()))
}
fn get_scheme(&self) -> SignatureScheme {
self.scheme
}
}
/// A SigningKey that uses exactly one TLS-level SignatureScheme
/// and one ring-level signature::SigningAlgorithm.
///
/// Compare this to RSASigningKey, which for a particular key is
/// willing to sign with several algorithms. This is quite poor
/// cryptography practice, but is necessary because a given RSA key
/// is expected to work in TLS1.2 (PKCS#1 signatures) and TLS1.3
/// (PSS signatures) -- nobody is willing to obtain certificates for
/// different protocol versions.
///
/// Currently this is only implemented for ECDSA keys.
struct ECDSASigningKey {
key: Arc<EcdsaKeyPair>,
scheme: SignatureScheme,
}
impl ECDSASigningKey {
/// Make a new `ECDSASigningKey` from a DER encoding in PKCS#8 format,
/// expecting a key usable with precisely the given signature scheme.
pub fn new(
der: &key::PrivateKey,
scheme: SignatureScheme,
sigalg: &'static signature::EcdsaSigningAlgorithm,
) -> Result<ECDSASigningKey, ()> {
EcdsaKeyPair::from_pkcs8(sigalg, &der.0)
.map(|kp| ECDSASigningKey {
key: Arc::new(kp),
scheme,
})
.map_err(|_| ())
}
}
impl SigningKey for ECDSASigningKey {
fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<dyn Signer>> {
if offered.contains(&self.scheme) {
Some(Box::new(ECDSASigner {
key: self.key.clone(),
scheme: self.scheme,
}))
} else {
None
}
}
fn algorithm(&self) -> SignatureAlgorithm {
use crate::msgs::handshake::DecomposedSignatureScheme;
self.scheme.sign()
}
}
struct ECDSASigner {
key: Arc<EcdsaKeyPair>,
scheme: SignatureScheme,
}
impl Signer for ECDSASigner {
fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError> {
let rng = ring::rand::SystemRandom::new();
self.key
.sign(&rng, message)
.map_err(|_| TLSError::General("signing failed".into()))
.map(|sig| sig.as_ref().into())
}
fn get_scheme(&self) -> SignatureScheme {
self.scheme
}
}
/// A SigningKey that uses exactly one TLS-level SignatureScheme
/// and one ring-level signature::SigningAlgorithm.
///
/// Compare this to RSASigningKey, which for a particular key is
/// willing to sign with several algorithms. This is quite poor
/// cryptography practice, but is necessary because a given RSA key
/// is expected to work in TLS1.2 (PKCS#1 signatures) and TLS1.3
/// (PSS signatures) -- nobody is willing to obtain certificates for
/// different protocol versions.
///
/// Currently this is only implemented for Ed25519 keys.
struct Ed25519SigningKey {
key: Arc<Ed25519KeyPair>,
scheme: SignatureScheme,
}
impl Ed25519SigningKey {
/// Make a new `Ed25519SigningKey` from a DER encoding in PKCS#8 format,
/// expecting a key usable with precisely the given signature scheme.
pub fn new(der: &key::PrivateKey, scheme: SignatureScheme) -> Result<Ed25519SigningKey, ()> {
Ed25519KeyPair::from_pkcs8_maybe_unchecked(&der.0)
.map(|kp| Ed25519SigningKey {
key: Arc::new(kp),
scheme,
})
.map_err(|_| ())
}
}
impl SigningKey for Ed25519SigningKey {
fn choose_scheme(&self, offered: &[SignatureScheme]) -> Option<Box<dyn Signer>> {
if offered.contains(&self.scheme) {
Some(Box::new(Ed25519Signer {
key: self.key.clone(),
scheme: self.scheme,
}))
} else {
None
}
}
fn algorithm(&self) -> SignatureAlgorithm {
use crate::msgs::handshake::DecomposedSignatureScheme;
self.scheme.sign()
}
}
struct Ed25519Signer {
key: Arc<Ed25519KeyPair>,
scheme: SignatureScheme,
}
impl Signer for Ed25519Signer {
fn sign(&self, message: &[u8]) -> Result<Vec<u8>, TLSError> {
Ok(self.key.sign(message).as_ref().into())
}
fn get_scheme(&self) -> SignatureScheme {
self.scheme
}
}
/// The set of schemes we support for signatures and
/// that are allowed for TLS1.3.
pub fn supported_sign_tls13() -> &'static [SignatureScheme] {
&[
SignatureScheme::ECDSA_NISTP384_SHA384,
SignatureScheme::ECDSA_NISTP256_SHA256,
SignatureScheme::RSA_PSS_SHA512,
SignatureScheme::RSA_PSS_SHA384,
SignatureScheme::RSA_PSS_SHA256,
SignatureScheme::ED25519,
]
}