1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// SPDX-License-Identifier: CC0-1.0

//! Serde serialization via consensus encoding
//!
//! This provides functions for (de)serializing any type as consensus-encoded bytes.
//! For human-readable formats it serializes as a string with a consumer-supplied encoding, for
//! binary formats it serializes as a sequence of bytes (not `serialize_bytes` to avoid allocations).
//!
//! The string encoding has to be specified using a marker type implementing the encoding strategy.
//! This crate provides hex encoding via `Hex<Upper>` and `Hex<Lower>`

use core::fmt;
use core::marker::PhantomData;

use io::Write;
use serde::de::{SeqAccess, Unexpected, Visitor};
use serde::ser::SerializeSeq;
use serde::{Deserializer, Serializer};

use super::encode::Error as ConsensusError;
use super::{Decodable, Encodable};
use crate::consensus::{DecodeError, IterReader};

/// Hex-encoding strategy
pub struct Hex<Case = hex::Lower>(PhantomData<Case>)
where
    Case: hex::Case;

impl<C: hex::Case> Default for Hex<C> {
    fn default() -> Self { Hex(Default::default()) }
}

impl<C: hex::Case> ByteEncoder for Hex<C> {
    type Encoder = hex::Encoder<C>;
}

/// Implements hex encoding.
pub mod hex {
    use core::fmt;
    use core::marker::PhantomData;

    use hex::buf_encoder::BufEncoder;

    /// Marker for upper/lower case type-level flags ("type-level enum").
    ///
    /// You may use this trait in bounds only.
    pub trait Case: sealed::Case {}
    impl<T: sealed::Case> Case for T {}

    /// Marker for using lower-case hex encoding.
    pub enum Lower {}
    /// Marker for using upper-case hex encoding.
    pub enum Upper {}

    mod sealed {
        pub trait Case {
            /// Internal detail, don't depend on it!!!
            const INTERNAL_CASE: hex::Case;
        }

        impl Case for super::Lower {
            const INTERNAL_CASE: hex::Case = hex::Case::Lower;
        }

        impl Case for super::Upper {
            const INTERNAL_CASE: hex::Case = hex::Case::Upper;
        }
    }

    // We just guessed at a reasonably sane value.
    const HEX_BUF_SIZE: usize = 512;

    /// Hex byte encoder.
    // We wrap `BufEncoder` to not leak internal representation.
    pub struct Encoder<C: Case>(BufEncoder<{ HEX_BUF_SIZE }>, PhantomData<C>);

    impl<C: Case> From<super::Hex<C>> for Encoder<C> {
        fn from(_: super::Hex<C>) -> Self { Encoder(BufEncoder::new(), Default::default()) }
    }

    impl<C: Case> super::EncodeBytes for Encoder<C> {
        fn encode_chunk<W: fmt::Write>(&mut self, writer: &mut W, mut bytes: &[u8]) -> fmt::Result {
            while !bytes.is_empty() {
                if self.0.is_full() {
                    self.flush(writer)?;
                }
                bytes = self.0.put_bytes_min(bytes, C::INTERNAL_CASE);
            }
            Ok(())
        }

        fn flush<W: fmt::Write>(&mut self, writer: &mut W) -> fmt::Result {
            writer.write_str(self.0.as_str())?;
            self.0.clear();
            Ok(())
        }
    }

    // Newtypes to hide internal details.

    /// Error returned when a hex string decoder can't be created.
    #[derive(Debug, Clone, PartialEq, Eq)]
    pub struct DecodeInitError(hex::OddLengthStringError);

    /// Error returned when a hex string contains invalid characters.
    #[derive(Debug, Clone, PartialEq, Eq)]
    pub struct DecodeError(hex::InvalidCharError);

    /// Hex decoder state.
    pub struct Decoder<'a>(hex::HexSliceToBytesIter<'a>);

    impl<'a> Decoder<'a> {
        fn new(s: &'a str) -> Result<Self, DecodeInitError> {
            match hex::HexToBytesIter::new(s) {
                Ok(iter) => Ok(Decoder(iter)),
                Err(error) => Err(DecodeInitError(error)),
            }
        }
    }

    impl<'a> Iterator for Decoder<'a> {
        type Item = Result<u8, DecodeError>;

        fn next(&mut self) -> Option<Self::Item> {
            self.0.next().map(|result| result.map_err(DecodeError))
        }
    }

    impl<'a, C: Case> super::ByteDecoder<'a> for super::Hex<C> {
        type InitError = DecodeInitError;
        type DecodeError = DecodeError;
        type Decoder = Decoder<'a>;

        fn from_str(s: &'a str) -> Result<Self::Decoder, Self::InitError> { Decoder::new(s) }
    }

    impl super::IntoDeError for DecodeInitError {
        fn into_de_error<E: serde::de::Error>(self) -> E {
            E::invalid_length(self.0.length(), &"an even number of ASCII-encoded hex digits")
        }
    }

    impl super::IntoDeError for DecodeError {
        fn into_de_error<E: serde::de::Error>(self) -> E {
            use serde::de::Unexpected;

            const EXPECTED_CHAR: &str = "an ASCII-encoded hex digit";

            match self.0.invalid_char() {
                c if c.is_ascii() => E::invalid_value(Unexpected::Char(c as _), &EXPECTED_CHAR),
                c => E::invalid_value(Unexpected::Unsigned(c.into()), &EXPECTED_CHAR),
            }
        }
    }
}

struct DisplayWrapper<'a, T: 'a + Encodable, E>(&'a T, PhantomData<E>);

impl<'a, T: 'a + Encodable, E: ByteEncoder> fmt::Display for DisplayWrapper<'a, T, E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut writer = IoWrapper::<'_, _, E::Encoder>::new(f, E::default().into());
        self.0.consensus_encode(&mut writer).map_err(|error| {
            #[cfg(debug_assertions)]
            {
                if error.kind() != io::ErrorKind::Other
                    || error.get_ref().is_some()
                    || !writer.writer.was_error
                {
                    panic!(
                        "{} returned an unexpected error: {:?}",
                        core::any::type_name::<T>(),
                        error
                    );
                }
            }
            fmt::Error
        })?;
        let result = writer.actually_flush();
        if result.is_err() {
            writer.writer.assert_was_error::<E>();
        }
        result
    }
}

struct ErrorTrackingWriter<W: fmt::Write> {
    writer: W,
    #[cfg(debug_assertions)]
    was_error: bool,
}

impl<W: fmt::Write> ErrorTrackingWriter<W> {
    fn new(writer: W) -> Self {
        ErrorTrackingWriter {
            writer,
            #[cfg(debug_assertions)]
            was_error: false,
        }
    }

    #[track_caller]
    fn assert_no_error(&self, fun: &str) {
        #[cfg(debug_assertions)]
        {
            if self.was_error {
                panic!("`{}` called on errored writer", fun);
            }
        }
    }

    fn assert_was_error<Offender>(&self) {
        #[cfg(debug_assertions)]
        {
            if !self.was_error {
                panic!("{} returned an error unexpectedly", core::any::type_name::<Offender>());
            }
        }
    }

    fn set_error(&mut self, was: bool) {
        #[cfg(debug_assertions)]
        {
            self.was_error |= was;
        }
    }

    fn check_err<T, E>(&mut self, result: Result<T, E>) -> Result<T, E> {
        self.set_error(result.is_err());
        result
    }
}

impl<W: fmt::Write> fmt::Write for ErrorTrackingWriter<W> {
    fn write_str(&mut self, s: &str) -> fmt::Result {
        self.assert_no_error("write_str");
        let result = self.writer.write_str(s);
        self.check_err(result)
    }

    fn write_char(&mut self, c: char) -> fmt::Result {
        self.assert_no_error("write_char");
        let result = self.writer.write_char(c);
        self.check_err(result)
    }
}

struct IoWrapper<'a, W: fmt::Write, E: EncodeBytes> {
    writer: ErrorTrackingWriter<&'a mut W>,
    encoder: E,
}

impl<'a, W: fmt::Write, E: EncodeBytes> IoWrapper<'a, W, E> {
    fn new(writer: &'a mut W, encoder: E) -> Self {
        IoWrapper { writer: ErrorTrackingWriter::new(writer), encoder }
    }

    fn actually_flush(&mut self) -> fmt::Result { self.encoder.flush(&mut self.writer) }
}

impl<'a, W: fmt::Write, E: EncodeBytes> Write for IoWrapper<'a, W, E> {
    fn write(&mut self, bytes: &[u8]) -> io::Result<usize> {
        match self.encoder.encode_chunk(&mut self.writer, bytes) {
            Ok(()) => Ok(bytes.len()),
            Err(fmt::Error) => {
                self.writer.assert_was_error::<E>();
                Err(io::Error::from(io::ErrorKind::Other))
            }
        }
    }
    // we intentionally ignore flushes because we will do a single flush at the end.
    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

/// Provides an instance of byte-to-string encoder.
///
/// This is basically a type constructor used in places where value arguments are not accepted.
/// Such as the generic `serialize`.
pub trait ByteEncoder: Default {
    /// The encoder state.
    type Encoder: EncodeBytes + From<Self>;
}

/// Transforms given bytes and writes to the writer.
///
/// The encoder is allowed to be buffered (and probably should be).
/// The design passing writer each time bypasses the need for GAT.
pub trait EncodeBytes {
    /// Transform the provided slice and write to the writer.
    ///
    /// This is similar to the `write_all` method on `io::Write`.
    fn encode_chunk<W: fmt::Write>(&mut self, writer: &mut W, bytes: &[u8]) -> fmt::Result;

    /// Write data in buffer (if any) to the writer.
    fn flush<W: fmt::Write>(&mut self, writer: &mut W) -> fmt::Result;
}

/// Provides an instance of string-to-byte decoder.
///
/// This is basically a type constructor used in places where value arguments are not accepted.
/// Such as the generic `serialize`.
pub trait ByteDecoder<'a> {
    /// Error returned when decoder can't be created.
    ///
    /// This is typically returned when string length is invalid.
    type InitError: IntoDeError + fmt::Debug;

    /// Error returned when decoding fails.
    ///
    /// This is typically returned when the input string contains malformed chars.
    type DecodeError: IntoDeError + fmt::Debug;

    /// The decoder state.
    type Decoder: Iterator<Item = Result<u8, Self::DecodeError>>;

    /// Constructs the decoder from string.
    fn from_str(s: &'a str) -> Result<Self::Decoder, Self::InitError>;
}

/// Converts error into a type implementing `serde::de::Error`
pub trait IntoDeError {
    /// Performs the conversion.
    fn into_de_error<E: serde::de::Error>(self) -> E;
}

struct BinWriter<S: SerializeSeq> {
    serializer: S,
    error: Option<S::Error>,
}

impl<S: SerializeSeq> Write for BinWriter<S> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.write_all(buf).map(|_| buf.len()) }

    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        for byte in buf {
            if let Err(error) = self.serializer.serialize_element(byte) {
                self.error = Some(error);
                return Err(io::ErrorKind::Other.into());
            }
        }
        Ok(())
    }

    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

struct DisplayExpected<D: fmt::Display>(D);

impl<D: fmt::Display> serde::de::Expected for DisplayExpected<D> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&self.0, formatter)
    }
}

// not a trait impl because we panic on some variants
fn consensus_error_into_serde<E: serde::de::Error>(error: ConsensusError) -> E {
    match error {
        ConsensusError::Io(error) => panic!("unexpected IO error {:?}", error),
        ConsensusError::OversizedVectorAllocation { requested, max } => E::custom(format_args!(
            "the requested allocation of {} items exceeds maximum of {}",
            requested, max
        )),
        ConsensusError::InvalidChecksum { expected, actual } => E::invalid_value(
            Unexpected::Bytes(&actual),
            &DisplayExpected(format_args!(
                "checksum {:02x}{:02x}{:02x}{:02x}",
                expected[0], expected[1], expected[2], expected[3]
            )),
        ),
        ConsensusError::NonMinimalVarInt =>
            E::custom(format_args!("compact size was not encoded minimally")),
        ConsensusError::ParseFailed(msg) => E::custom(msg),
        ConsensusError::UnsupportedSegwitFlag(flag) =>
            E::invalid_value(Unexpected::Unsigned(flag.into()), &"segwit version 1 flag"),
    }
}

impl<E> DecodeError<E>
where
    E: serde::de::Error,
{
    fn unify(self) -> E {
        match self {
            DecodeError::Other(error) => error,
            DecodeError::TooManyBytes => E::custom(format_args!("got more bytes than expected")),
            DecodeError::Consensus(error) => consensus_error_into_serde(error),
        }
    }
}

impl<E> IntoDeError for DecodeError<E>
where
    E: IntoDeError,
{
    fn into_de_error<DE: serde::de::Error>(self) -> DE {
        match self {
            DecodeError::Other(error) => error.into_de_error(),
            DecodeError::TooManyBytes => DE::custom(format_args!("got more bytes than expected")),
            DecodeError::Consensus(error) => consensus_error_into_serde(error),
        }
    }
}

/// Helper for `#[serde(with = "")]`.
///
/// To (de)serialize a field using consensus encoding you can write e.g.:
///
/// ```
/// # use actual_serde::{Serialize, Deserialize};
/// use bitcoin::Transaction;
/// use bitcoin::consensus;
///
/// #[derive(Serialize, Deserialize)]
/// # #[serde(crate = "actual_serde")]
/// pub struct MyStruct {
///     #[serde(with = "consensus::serde::With::<consensus::serde::Hex>")]
///     tx: Transaction,
/// }
/// ```
pub struct With<E>(PhantomData<E>);

impl<E> With<E> {
    /// Serializes the value as consensus-encoded
    pub fn serialize<T: Encodable, S: Serializer>(
        value: &T,
        serializer: S,
    ) -> Result<S::Ok, S::Error>
    where
        E: ByteEncoder,
    {
        if serializer.is_human_readable() {
            serializer.collect_str(&DisplayWrapper::<'_, _, E>(value, Default::default()))
        } else {
            let serializer = serializer.serialize_seq(None)?;
            let mut writer = BinWriter { serializer, error: None };

            let result = value.consensus_encode(&mut writer);
            match (result, writer.error) {
                (Ok(_), None) => writer.serializer.end(),
                (Ok(_), Some(error)) =>
                    panic!("{} silently ate an IO error: {:?}", core::any::type_name::<T>(), error),
                (Err(io_error), Some(ser_error))
                    if io_error.kind() == io::ErrorKind::Other && io_error.get_ref().is_none() =>
                    Err(ser_error),
                (Err(io_error), ser_error) => panic!(
                    "{} returned an unexpected IO error: {:?} serialization error: {:?}",
                    core::any::type_name::<T>(),
                    io_error,
                    ser_error
                ),
            }
        }
    }

    /// Deserializes the value as consensus-encoded
    pub fn deserialize<'d, T: Decodable, D: Deserializer<'d>>(
        deserializer: D,
    ) -> Result<T, D::Error>
    where
        for<'a> E: ByteDecoder<'a>,
    {
        if deserializer.is_human_readable() {
            deserializer.deserialize_str(HRVisitor::<_, E>(Default::default()))
        } else {
            deserializer.deserialize_seq(BinVisitor(Default::default()))
        }
    }
}

struct HRVisitor<T: Decodable, D: for<'a> ByteDecoder<'a>>(PhantomData<fn() -> (T, D)>);

impl<'de, T: Decodable, D: for<'a> ByteDecoder<'a>> Visitor<'de> for HRVisitor<T, D> {
    type Value = T;

    fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("bytes encoded as a hex string")
    }

    fn visit_str<E: serde::de::Error>(self, s: &str) -> Result<T, E> {
        let decoder = D::from_str(s).map_err(IntoDeError::into_de_error)?;
        IterReader::new(decoder).decode().map_err(IntoDeError::into_de_error)
    }
}

struct BinVisitor<T: Decodable>(PhantomData<fn() -> T>);

impl<'de, T: Decodable> Visitor<'de> for BinVisitor<T> {
    type Value = T;

    fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("a sequence of bytes")
    }

    fn visit_seq<S: SeqAccess<'de>>(self, s: S) -> Result<T, S::Error> {
        IterReader::new(SeqIterator(s, Default::default())).decode().map_err(DecodeError::unify)
    }
}

struct SeqIterator<'a, S: serde::de::SeqAccess<'a>>(S, PhantomData<&'a ()>);

impl<'a, S: serde::de::SeqAccess<'a>> Iterator for SeqIterator<'a, S> {
    type Item = Result<u8, S::Error>;

    fn next(&mut self) -> Option<Self::Item> { self.0.next_element::<u8>().transpose() }
}