1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
// SPDX-License-Identifier: CC0-1.0

//! SHA256 implementation.
//!

#[cfg(all(feature = "std", target_arch = "x86"))]
use core::arch::x86::*;
#[cfg(all(feature = "std", target_arch = "x86_64"))]
use core::arch::x86_64::*;
use core::ops::Index;
use core::slice::SliceIndex;
use core::{cmp, str};

use crate::{sha256d, FromSliceError, HashEngine as _};

crate::internal_macros::hash_type! {
    256,
    false,
    "Output of the SHA256 hash function."
}

#[cfg(not(hashes_fuzz))]
fn from_engine(mut e: HashEngine) -> Hash {
    // pad buffer with a single 1-bit then all 0s, until there are exactly 8 bytes remaining
    let data_len = e.length as u64;

    let zeroes = [0; BLOCK_SIZE - 8];
    e.input(&[0x80]);
    if e.length % BLOCK_SIZE > zeroes.len() {
        e.input(&zeroes);
    }
    let pad_length = zeroes.len() - (e.length % BLOCK_SIZE);
    e.input(&zeroes[..pad_length]);
    debug_assert_eq!(e.length % BLOCK_SIZE, zeroes.len());

    e.input(&(8 * data_len).to_be_bytes());
    debug_assert_eq!(e.length % BLOCK_SIZE, 0);

    Hash(e.midstate().to_byte_array())
}

#[cfg(hashes_fuzz)]
fn from_engine(e: HashEngine) -> Hash {
    let mut hash = e.midstate().to_byte_array();
    if hash == [0; 32] {
        // Assume sha256 is secure and never generate 0-hashes (which represent invalid
        // secp256k1 secret keys, causing downstream application breakage).
        hash[0] = 1;
    }
    Hash(hash)
}

const BLOCK_SIZE: usize = 64;

/// Engine to compute SHA256 hash function.
#[derive(Clone)]
pub struct HashEngine {
    buffer: [u8; BLOCK_SIZE],
    h: [u32; 8],
    length: usize,
}

impl Default for HashEngine {
    fn default() -> Self {
        HashEngine {
            h: [
                0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab,
                0x5be0cd19,
            ],
            length: 0,
            buffer: [0; BLOCK_SIZE],
        }
    }
}

impl crate::HashEngine for HashEngine {
    type MidState = Midstate;

    #[cfg(not(hashes_fuzz))]
    fn midstate(&self) -> Midstate {
        let mut ret = [0; 32];
        for (val, ret_bytes) in self.h.iter().zip(ret.chunks_exact_mut(4)) {
            ret_bytes.copy_from_slice(&val.to_be_bytes());
        }
        Midstate(ret)
    }

    #[cfg(hashes_fuzz)]
    fn midstate(&self) -> Midstate {
        let mut ret = [0; 32];
        ret.copy_from_slice(&self.buffer[..32]);
        Midstate(ret)
    }

    const BLOCK_SIZE: usize = 64;

    fn n_bytes_hashed(&self) -> usize { self.length }

    engine_input_impl!();
}

impl Hash {
    /// Iterate the sha256 algorithm to turn a sha256 hash into a sha256d hash
    pub fn hash_again(&self) -> sha256d::Hash {
        crate::Hash::from_byte_array(<Self as crate::Hash>::hash(&self.0).0)
    }

    /// Computes hash from `bytes` in `const` context.
    ///
    /// Warning: this function is inefficient. It should be only used in `const` context.
    pub const fn const_hash(bytes: &[u8]) -> Self { Hash(Midstate::const_hash(bytes, true).0) }
}

/// Output of the SHA256 hash function.
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
pub struct Midstate(pub [u8; 32]);

crate::internal_macros::arr_newtype_fmt_impl!(Midstate, 32);
serde_impl!(Midstate, 32);
borrow_slice_impl!(Midstate);

impl<I: SliceIndex<[u8]>> Index<I> for Midstate {
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output { &self.0[index] }
}

impl str::FromStr for Midstate {
    type Err = hex::HexToArrayError;
    fn from_str(s: &str) -> Result<Self, Self::Err> { hex::FromHex::from_hex(s) }
}

impl Midstate {
    /// Length of the midstate, in bytes.
    const LEN: usize = 32;

    /// Flag indicating whether user-visible serializations of this hash
    /// should be backward. For some reason Satoshi decided this should be
    /// true for `Sha256dHash`, so here we are.
    const DISPLAY_BACKWARD: bool = true;

    /// Construct a new [`Midstate`] from the inner value.
    pub const fn from_byte_array(inner: [u8; 32]) -> Self { Midstate(inner) }

    /// Copies a byte slice into the [`Midstate`] object.
    pub fn from_slice(sl: &[u8]) -> Result<Midstate, FromSliceError> {
        if sl.len() != Self::LEN {
            Err(FromSliceError { expected: Self::LEN, got: sl.len() })
        } else {
            let mut ret = [0; 32];
            ret.copy_from_slice(sl);
            Ok(Midstate(ret))
        }
    }

    /// Unwraps the [`Midstate`] and returns the underlying byte array.
    pub fn to_byte_array(self) -> [u8; 32] { self.0 }

    /// Creates midstate for tagged hashes.
    ///
    /// Warning: this function is inefficient. It should be only used in `const` context.
    ///
    /// Computes non-finalized hash of `sha256(tag) || sha256(tag)` for use in
    /// [`sha256t`](super::sha256t). It's provided for use with [`sha256t`](crate::sha256t).
    pub const fn hash_tag(tag: &[u8]) -> Self {
        let hash = Hash::const_hash(tag);
        let mut buf = [0u8; 64];
        let mut i = 0usize;
        while i < buf.len() {
            buf[i] = hash.0[i % hash.0.len()];
            i += 1;
        }
        Self::const_hash(&buf, false)
    }
}

impl hex::FromHex for Midstate {
    type Error = hex::HexToArrayError;

    fn from_hex(s: &str) -> Result<Self, Self::Error> {
        // DISPLAY_BACKWARD is true
        let mut bytes = <[u8; 32]>::from_hex(s)?;
        bytes.reverse();
        Ok(Midstate(bytes))
    }
}

#[allow(non_snake_case)]
const fn Ch(x: u32, y: u32, z: u32) -> u32 { z ^ (x & (y ^ z)) }
#[allow(non_snake_case)]
const fn Maj(x: u32, y: u32, z: u32) -> u32 { (x & y) | (z & (x | y)) }
#[allow(non_snake_case)]
const fn Sigma0(x: u32) -> u32 { x.rotate_left(30) ^ x.rotate_left(19) ^ x.rotate_left(10) }
#[allow(non_snake_case)]
const fn Sigma1(x: u32) -> u32 { x.rotate_left(26) ^ x.rotate_left(21) ^ x.rotate_left(7) }
const fn sigma0(x: u32) -> u32 { x.rotate_left(25) ^ x.rotate_left(14) ^ (x >> 3) }
const fn sigma1(x: u32) -> u32 { x.rotate_left(15) ^ x.rotate_left(13) ^ (x >> 10) }

#[cfg(feature = "small-hash")]
#[macro_use]
mod small_hash {
    use super::*;

    #[rustfmt::skip]
    pub(super) const fn round(a: u32, b: u32, c: u32, d: u32, e: u32,
                              f: u32, g: u32, h: u32, k: u32, w: u32) -> (u32, u32) {
        let t1 =
            h.wrapping_add(Sigma1(e)).wrapping_add(Ch(e, f, g)).wrapping_add(k).wrapping_add(w);
        let t2 = Sigma0(a).wrapping_add(Maj(a, b, c));
        (d.wrapping_add(t1), t1.wrapping_add(t2))
    }
    #[rustfmt::skip]
    pub(super) const fn later_round(a: u32, b: u32, c: u32, d: u32, e: u32,
                                    f: u32, g: u32, h: u32, k: u32, w: u32,
                                    w1: u32, w2: u32, w3: u32,
    ) -> (u32, u32, u32) {
        let w = w.wrapping_add(sigma1(w1)).wrapping_add(w2).wrapping_add(sigma0(w3));
        let (d, h) = round(a, b, c, d, e, f, g, h, k, w);
        (d, h, w)
    }

    macro_rules! round(
        // first round
        ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr) => (
            let updates = small_hash::round($a, $b, $c, $d, $e, $f, $g, $h, $k, $w);
            $d = updates.0;
            $h = updates.1;
        );
        // later rounds we reassign $w before doing the first-round computation
        ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr, $w1:expr, $w2:expr, $w3:expr) => (
            let updates = small_hash::later_round($a, $b, $c, $d, $e, $f, $g, $h, $k, $w, $w1, $w2, $w3);
            $d = updates.0;
            $h = updates.1;
            $w = updates.2;
        )
    );
}

#[cfg(not(feature = "small-hash"))]
#[macro_use]
mod fast_hash {
    macro_rules! round(
        // first round
        ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr) => (
            let t1 = $h.wrapping_add(Sigma1($e)).wrapping_add(Ch($e, $f, $g)).wrapping_add($k).wrapping_add($w);
            let t2 = Sigma0($a).wrapping_add(Maj($a, $b, $c));
            $d = $d.wrapping_add(t1);
            $h = t1.wrapping_add(t2);
        );
        // later rounds we reassign $w before doing the first-round computation
        ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr, $w1:expr, $w2:expr, $w3:expr) => (
            $w = $w.wrapping_add(sigma1($w1)).wrapping_add($w2).wrapping_add(sigma0($w3));
            round!($a, $b, $c, $d, $e, $f, $g, $h, $k, $w);
        )
    );
}

impl Midstate {
    #[allow(clippy::identity_op)] // more readble
    const fn read_u32(bytes: &[u8], index: usize) -> u32 {
        ((bytes[index + 0] as u32) << 24)
            | ((bytes[index + 1] as u32) << 16)
            | ((bytes[index + 2] as u32) << 8)
            | ((bytes[index + 3] as u32) << 0)
    }

    const fn copy_w(bytes: &[u8], index: usize) -> [u32; 16] {
        let mut w = [0u32; 16];
        let mut i = 0;
        while i < 16 {
            w[i] = Self::read_u32(bytes, index + i * 4);
            i += 1;
        }
        w
    }

    const fn const_hash(bytes: &[u8], finalize: bool) -> Self {
        let mut state = [
            0x6a09e667u32,
            0xbb67ae85,
            0x3c6ef372,
            0xa54ff53a,
            0x510e527f,
            0x9b05688c,
            0x1f83d9ab,
            0x5be0cd19,
        ];

        let num_chunks = (bytes.len() + 9 + 63) / 64;
        let mut chunk = 0;
        #[allow(clippy::precedence)]
        while chunk < num_chunks {
            if !finalize && chunk + 1 == num_chunks {
                break;
            }
            let mut w = if chunk * 64 + 64 <= bytes.len() {
                Self::copy_w(bytes, chunk * 64)
            } else {
                let mut buf = [0; 64];
                let mut i = 0;
                let offset = chunk * 64;
                while offset + i < bytes.len() {
                    buf[i] = bytes[offset + i];
                    i += 1;
                }
                if (bytes.len() % 64 <= 64 - 9) || (chunk + 2 == num_chunks) {
                    buf[i] = 0x80;
                }
                #[allow(clippy::identity_op)] // more readble
                #[allow(clippy::erasing_op)]
                if chunk + 1 == num_chunks {
                    let bit_len = bytes.len() as u64 * 8;
                    buf[64 - 8] = ((bit_len >> 8 * 7) & 0xFF) as u8;
                    buf[64 - 7] = ((bit_len >> 8 * 6) & 0xFF) as u8;
                    buf[64 - 6] = ((bit_len >> 8 * 5) & 0xFF) as u8;
                    buf[64 - 5] = ((bit_len >> 8 * 4) & 0xFF) as u8;
                    buf[64 - 4] = ((bit_len >> 8 * 3) & 0xFF) as u8;
                    buf[64 - 3] = ((bit_len >> 8 * 2) & 0xFF) as u8;
                    buf[64 - 2] = ((bit_len >> 8 * 1) & 0xFF) as u8;
                    buf[64 - 1] = ((bit_len >> 8 * 0) & 0xFF) as u8;
                }
                Self::copy_w(&buf, 0)
            };
            chunk += 1;

            let mut a = state[0];
            let mut b = state[1];
            let mut c = state[2];
            let mut d = state[3];
            let mut e = state[4];
            let mut f = state[5];
            let mut g = state[6];
            let mut h = state[7];

            round!(a, b, c, d, e, f, g, h, 0x428a2f98, w[0]);
            round!(h, a, b, c, d, e, f, g, 0x71374491, w[1]);
            round!(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w[2]);
            round!(f, g, h, a, b, c, d, e, 0xe9b5dba5, w[3]);
            round!(e, f, g, h, a, b, c, d, 0x3956c25b, w[4]);
            round!(d, e, f, g, h, a, b, c, 0x59f111f1, w[5]);
            round!(c, d, e, f, g, h, a, b, 0x923f82a4, w[6]);
            round!(b, c, d, e, f, g, h, a, 0xab1c5ed5, w[7]);
            round!(a, b, c, d, e, f, g, h, 0xd807aa98, w[8]);
            round!(h, a, b, c, d, e, f, g, 0x12835b01, w[9]);
            round!(g, h, a, b, c, d, e, f, 0x243185be, w[10]);
            round!(f, g, h, a, b, c, d, e, 0x550c7dc3, w[11]);
            round!(e, f, g, h, a, b, c, d, 0x72be5d74, w[12]);
            round!(d, e, f, g, h, a, b, c, 0x80deb1fe, w[13]);
            round!(c, d, e, f, g, h, a, b, 0x9bdc06a7, w[14]);
            round!(b, c, d, e, f, g, h, a, 0xc19bf174, w[15]);

            round!(a, b, c, d, e, f, g, h, 0xe49b69c1, w[0], w[14], w[9], w[1]);
            round!(h, a, b, c, d, e, f, g, 0xefbe4786, w[1], w[15], w[10], w[2]);
            round!(g, h, a, b, c, d, e, f, 0x0fc19dc6, w[2], w[0], w[11], w[3]);
            round!(f, g, h, a, b, c, d, e, 0x240ca1cc, w[3], w[1], w[12], w[4]);
            round!(e, f, g, h, a, b, c, d, 0x2de92c6f, w[4], w[2], w[13], w[5]);
            round!(d, e, f, g, h, a, b, c, 0x4a7484aa, w[5], w[3], w[14], w[6]);
            round!(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w[6], w[4], w[15], w[7]);
            round!(b, c, d, e, f, g, h, a, 0x76f988da, w[7], w[5], w[0], w[8]);
            round!(a, b, c, d, e, f, g, h, 0x983e5152, w[8], w[6], w[1], w[9]);
            round!(h, a, b, c, d, e, f, g, 0xa831c66d, w[9], w[7], w[2], w[10]);
            round!(g, h, a, b, c, d, e, f, 0xb00327c8, w[10], w[8], w[3], w[11]);
            round!(f, g, h, a, b, c, d, e, 0xbf597fc7, w[11], w[9], w[4], w[12]);
            round!(e, f, g, h, a, b, c, d, 0xc6e00bf3, w[12], w[10], w[5], w[13]);
            round!(d, e, f, g, h, a, b, c, 0xd5a79147, w[13], w[11], w[6], w[14]);
            round!(c, d, e, f, g, h, a, b, 0x06ca6351, w[14], w[12], w[7], w[15]);
            round!(b, c, d, e, f, g, h, a, 0x14292967, w[15], w[13], w[8], w[0]);

            round!(a, b, c, d, e, f, g, h, 0x27b70a85, w[0], w[14], w[9], w[1]);
            round!(h, a, b, c, d, e, f, g, 0x2e1b2138, w[1], w[15], w[10], w[2]);
            round!(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w[2], w[0], w[11], w[3]);
            round!(f, g, h, a, b, c, d, e, 0x53380d13, w[3], w[1], w[12], w[4]);
            round!(e, f, g, h, a, b, c, d, 0x650a7354, w[4], w[2], w[13], w[5]);
            round!(d, e, f, g, h, a, b, c, 0x766a0abb, w[5], w[3], w[14], w[6]);
            round!(c, d, e, f, g, h, a, b, 0x81c2c92e, w[6], w[4], w[15], w[7]);
            round!(b, c, d, e, f, g, h, a, 0x92722c85, w[7], w[5], w[0], w[8]);
            round!(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w[8], w[6], w[1], w[9]);
            round!(h, a, b, c, d, e, f, g, 0xa81a664b, w[9], w[7], w[2], w[10]);
            round!(g, h, a, b, c, d, e, f, 0xc24b8b70, w[10], w[8], w[3], w[11]);
            round!(f, g, h, a, b, c, d, e, 0xc76c51a3, w[11], w[9], w[4], w[12]);
            round!(e, f, g, h, a, b, c, d, 0xd192e819, w[12], w[10], w[5], w[13]);
            round!(d, e, f, g, h, a, b, c, 0xd6990624, w[13], w[11], w[6], w[14]);
            round!(c, d, e, f, g, h, a, b, 0xf40e3585, w[14], w[12], w[7], w[15]);
            round!(b, c, d, e, f, g, h, a, 0x106aa070, w[15], w[13], w[8], w[0]);

            round!(a, b, c, d, e, f, g, h, 0x19a4c116, w[0], w[14], w[9], w[1]);
            round!(h, a, b, c, d, e, f, g, 0x1e376c08, w[1], w[15], w[10], w[2]);
            round!(g, h, a, b, c, d, e, f, 0x2748774c, w[2], w[0], w[11], w[3]);
            round!(f, g, h, a, b, c, d, e, 0x34b0bcb5, w[3], w[1], w[12], w[4]);
            round!(e, f, g, h, a, b, c, d, 0x391c0cb3, w[4], w[2], w[13], w[5]);
            round!(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w[5], w[3], w[14], w[6]);
            round!(c, d, e, f, g, h, a, b, 0x5b9cca4f, w[6], w[4], w[15], w[7]);
            round!(b, c, d, e, f, g, h, a, 0x682e6ff3, w[7], w[5], w[0], w[8]);
            round!(a, b, c, d, e, f, g, h, 0x748f82ee, w[8], w[6], w[1], w[9]);
            round!(h, a, b, c, d, e, f, g, 0x78a5636f, w[9], w[7], w[2], w[10]);
            round!(g, h, a, b, c, d, e, f, 0x84c87814, w[10], w[8], w[3], w[11]);
            round!(f, g, h, a, b, c, d, e, 0x8cc70208, w[11], w[9], w[4], w[12]);
            round!(e, f, g, h, a, b, c, d, 0x90befffa, w[12], w[10], w[5], w[13]);
            round!(d, e, f, g, h, a, b, c, 0xa4506ceb, w[13], w[11], w[6], w[14]);
            round!(c, d, e, f, g, h, a, b, 0xbef9a3f7, w[14], w[12], w[7], w[15]);
            round!(b, c, d, e, f, g, h, a, 0xc67178f2, w[15], w[13], w[8], w[0]);

            state[0] = state[0].wrapping_add(a);
            state[1] = state[1].wrapping_add(b);
            state[2] = state[2].wrapping_add(c);
            state[3] = state[3].wrapping_add(d);
            state[4] = state[4].wrapping_add(e);
            state[5] = state[5].wrapping_add(f);
            state[6] = state[6].wrapping_add(g);
            state[7] = state[7].wrapping_add(h);
        }
        let mut output = [0u8; 32];
        let mut i = 0;
        #[allow(clippy::identity_op)] // more readble
        while i < 8 {
            output[i * 4 + 0] = (state[i + 0] >> 24) as u8;
            output[i * 4 + 1] = (state[i + 0] >> 16) as u8;
            output[i * 4 + 2] = (state[i + 0] >> 8) as u8;
            output[i * 4 + 3] = (state[i + 0] >> 0) as u8;
            i += 1;
        }
        Midstate(output)
    }
}

impl HashEngine {
    /// Create a new [`HashEngine`] from a [`Midstate`].
    ///
    /// # Panics
    ///
    /// If `length` is not a multiple of the block size.
    pub fn from_midstate(midstate: Midstate, length: usize) -> HashEngine {
        assert!(length % BLOCK_SIZE == 0, "length is no multiple of the block size");

        let mut ret = [0; 8];
        for (ret_val, midstate_bytes) in ret.iter_mut().zip(midstate[..].chunks_exact(4)) {
            *ret_val = u32::from_be_bytes(midstate_bytes.try_into().expect("4 byte slice"));
        }

        HashEngine { buffer: [0; BLOCK_SIZE], h: ret, length }
    }

    fn process_block(&mut self) {
        #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
        {
            if is_x86_feature_detected!("sse4.1")
                && is_x86_feature_detected!("sha")
                && is_x86_feature_detected!("sse2")
                && is_x86_feature_detected!("ssse3")
            {
                return unsafe { self.process_block_simd_x86_intrinsics() };
            }
        }

        // fallback implementation without using any intrinsics
        self.software_process_block()
    }

    #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))]
    #[target_feature(enable = "sha,sse2,ssse3,sse4.1")]
    unsafe fn process_block_simd_x86_intrinsics(&mut self) {
        // Code translated and based on from
        // https://github.com/noloader/SHA-Intrinsics/blob/4899efc81d1af159c1fd955936c673139f35aea9/sha256-x86.c

        /* sha256-x86.c - Intel SHA extensions using C intrinsics  */
        /*   Written and place in public domain by Jeffrey Walton  */
        /*   Based on code from Intel, and by Sean Gulley for      */
        /*   the miTLS project.                                    */

        // Variable names are also kept the same as in the original C code for easier comparison.
        let (mut state0, mut state1);
        let (mut msg, mut tmp);

        let (mut msg0, mut msg1, mut msg2, mut msg3);

        let (abef_save, cdgh_save);

        #[allow(non_snake_case)]
        let MASK: __m128i =
            _mm_set_epi64x(0x0c0d_0e0f_0809_0a0bu64 as i64, 0x0405_0607_0001_0203u64 as i64);

        let block_offset = 0;

        // Load initial values
        // CAST SAFETY: loadu_si128 documentation states that mem_addr does not
        // need to be aligned on any particular boundary.
        tmp = _mm_loadu_si128(self.h.as_ptr().add(0) as *const __m128i);
        state1 = _mm_loadu_si128(self.h.as_ptr().add(4) as *const __m128i);

        tmp = _mm_shuffle_epi32(tmp, 0xB1); // CDAB
        state1 = _mm_shuffle_epi32(state1, 0x1B); // EFGH
        state0 = _mm_alignr_epi8(tmp, state1, 8); // ABEF
        state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH

        // Process a single block
        {
            // Save current state
            abef_save = state0;
            cdgh_save = state1;

            // Rounds 0-3
            msg = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset) as *const __m128i);
            msg0 = _mm_shuffle_epi8(msg, MASK);
            msg = _mm_add_epi32(
                msg0,
                _mm_set_epi64x(0xE9B5DBA5B5C0FBCFu64 as i64, 0x71374491428A2F98u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);

            // Rounds 4-7
            msg1 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 16) as *const __m128i);
            msg1 = _mm_shuffle_epi8(msg1, MASK);
            msg = _mm_add_epi32(
                msg1,
                _mm_set_epi64x(0xAB1C5ED5923F82A4u64 as i64, 0x59F111F13956C25Bu64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg0 = _mm_sha256msg1_epu32(msg0, msg1);

            // Rounds 8-11
            msg2 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 32) as *const __m128i);
            msg2 = _mm_shuffle_epi8(msg2, MASK);
            msg = _mm_add_epi32(
                msg2,
                _mm_set_epi64x(0x550C7DC3243185BEu64 as i64, 0x12835B01D807AA98u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg1 = _mm_sha256msg1_epu32(msg1, msg2);

            // Rounds 12-15
            msg3 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 48) as *const __m128i);
            msg3 = _mm_shuffle_epi8(msg3, MASK);
            msg = _mm_add_epi32(
                msg3,
                _mm_set_epi64x(0xC19BF1749BDC06A7u64 as i64, 0x80DEB1FE72BE5D74u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg3, msg2, 4);
            msg0 = _mm_add_epi32(msg0, tmp);
            msg0 = _mm_sha256msg2_epu32(msg0, msg3);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg2 = _mm_sha256msg1_epu32(msg2, msg3);

            // Rounds 16-19
            msg = _mm_add_epi32(
                msg0,
                _mm_set_epi64x(0x240CA1CC0FC19DC6u64 as i64, 0xEFBE4786E49B69C1u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg0, msg3, 4);
            msg1 = _mm_add_epi32(msg1, tmp);
            msg1 = _mm_sha256msg2_epu32(msg1, msg0);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg3 = _mm_sha256msg1_epu32(msg3, msg0);

            // Rounds 20-23
            msg = _mm_add_epi32(
                msg1,
                _mm_set_epi64x(0x76F988DA5CB0A9DCu64 as i64, 0x4A7484AA2DE92C6Fu64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg1, msg0, 4);
            msg2 = _mm_add_epi32(msg2, tmp);
            msg2 = _mm_sha256msg2_epu32(msg2, msg1);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg0 = _mm_sha256msg1_epu32(msg0, msg1);

            // Rounds 24-27
            msg = _mm_add_epi32(
                msg2,
                _mm_set_epi64x(0xBF597FC7B00327C8u64 as i64, 0xA831C66D983E5152u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg2, msg1, 4);
            msg3 = _mm_add_epi32(msg3, tmp);
            msg3 = _mm_sha256msg2_epu32(msg3, msg2);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg1 = _mm_sha256msg1_epu32(msg1, msg2);

            // Rounds 28-31
            msg = _mm_add_epi32(
                msg3,
                _mm_set_epi64x(0x1429296706CA6351u64 as i64, 0xD5A79147C6E00BF3u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg3, msg2, 4);
            msg0 = _mm_add_epi32(msg0, tmp);
            msg0 = _mm_sha256msg2_epu32(msg0, msg3);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg2 = _mm_sha256msg1_epu32(msg2, msg3);

            // Rounds 32-35
            msg = _mm_add_epi32(
                msg0,
                _mm_set_epi64x(0x53380D134D2C6DFCu64 as i64, 0x2E1B213827B70A85u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg0, msg3, 4);
            msg1 = _mm_add_epi32(msg1, tmp);
            msg1 = _mm_sha256msg2_epu32(msg1, msg0);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg3 = _mm_sha256msg1_epu32(msg3, msg0);

            // Rounds 36-39
            msg = _mm_add_epi32(
                msg1,
                _mm_set_epi64x(0x92722C8581C2C92Eu64 as i64, 0x766A0ABB650A7354u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg1, msg0, 4);
            msg2 = _mm_add_epi32(msg2, tmp);
            msg2 = _mm_sha256msg2_epu32(msg2, msg1);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg0 = _mm_sha256msg1_epu32(msg0, msg1);

            // Rounds 40-43
            msg = _mm_add_epi32(
                msg2,
                _mm_set_epi64x(0xC76C51A3C24B8B70u64 as i64, 0xA81A664BA2BFE8A1u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg2, msg1, 4);
            msg3 = _mm_add_epi32(msg3, tmp);
            msg3 = _mm_sha256msg2_epu32(msg3, msg2);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg1 = _mm_sha256msg1_epu32(msg1, msg2);

            // Rounds 44-47
            msg = _mm_add_epi32(
                msg3,
                _mm_set_epi64x(0x106AA070F40E3585u64 as i64, 0xD6990624D192E819u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg3, msg2, 4);
            msg0 = _mm_add_epi32(msg0, tmp);
            msg0 = _mm_sha256msg2_epu32(msg0, msg3);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg2 = _mm_sha256msg1_epu32(msg2, msg3);

            // Rounds 48-51
            msg = _mm_add_epi32(
                msg0,
                _mm_set_epi64x(0x34B0BCB52748774Cu64 as i64, 0x1E376C0819A4C116u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg0, msg3, 4);
            msg1 = _mm_add_epi32(msg1, tmp);
            msg1 = _mm_sha256msg2_epu32(msg1, msg0);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
            msg3 = _mm_sha256msg1_epu32(msg3, msg0);

            // Rounds 52-55
            msg = _mm_add_epi32(
                msg1,
                _mm_set_epi64x(0x682E6FF35B9CCA4Fu64 as i64, 0x4ED8AA4A391C0CB3u64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg1, msg0, 4);
            msg2 = _mm_add_epi32(msg2, tmp);
            msg2 = _mm_sha256msg2_epu32(msg2, msg1);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);

            // Rounds 56-59
            msg = _mm_add_epi32(
                msg2,
                _mm_set_epi64x(0x8CC7020884C87814u64 as i64, 0x78A5636F748F82EEu64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            tmp = _mm_alignr_epi8(msg2, msg1, 4);
            msg3 = _mm_add_epi32(msg3, tmp);
            msg3 = _mm_sha256msg2_epu32(msg3, msg2);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);

            // Rounds 60-63
            msg = _mm_add_epi32(
                msg3,
                _mm_set_epi64x(0xC67178F2BEF9A3F7u64 as i64, 0xA4506CEB90BEFFFAu64 as i64),
            );
            state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
            msg = _mm_shuffle_epi32(msg, 0x0E);
            state0 = _mm_sha256rnds2_epu32(state0, state1, msg);

            // Combine state
            state0 = _mm_add_epi32(state0, abef_save);
            state1 = _mm_add_epi32(state1, cdgh_save);
        }

        tmp = _mm_shuffle_epi32(state0, 0x1B); // FEBA
        state1 = _mm_shuffle_epi32(state1, 0xB1); // DCHG
        state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA
        state1 = _mm_alignr_epi8(state1, tmp, 8); // ABEF

        // Save state
        // CAST SAFETY: storeu_si128 documentation states that mem_addr does not
        // need to be aligned on any particular boundary.
        _mm_storeu_si128(self.h.as_mut_ptr().add(0) as *mut __m128i, state0);
        _mm_storeu_si128(self.h.as_mut_ptr().add(4) as *mut __m128i, state1);
    }

    // Algorithm copied from libsecp256k1
    fn software_process_block(&mut self) {
        debug_assert_eq!(self.buffer.len(), BLOCK_SIZE);

        let mut w = [0u32; 16];
        for (w_val, buff_bytes) in w.iter_mut().zip(self.buffer.chunks_exact(4)) {
            *w_val = u32::from_be_bytes(buff_bytes.try_into().expect("4 byte slice"));
        }

        let mut a = self.h[0];
        let mut b = self.h[1];
        let mut c = self.h[2];
        let mut d = self.h[3];
        let mut e = self.h[4];
        let mut f = self.h[5];
        let mut g = self.h[6];
        let mut h = self.h[7];

        round!(a, b, c, d, e, f, g, h, 0x428a2f98, w[0]);
        round!(h, a, b, c, d, e, f, g, 0x71374491, w[1]);
        round!(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w[2]);
        round!(f, g, h, a, b, c, d, e, 0xe9b5dba5, w[3]);
        round!(e, f, g, h, a, b, c, d, 0x3956c25b, w[4]);
        round!(d, e, f, g, h, a, b, c, 0x59f111f1, w[5]);
        round!(c, d, e, f, g, h, a, b, 0x923f82a4, w[6]);
        round!(b, c, d, e, f, g, h, a, 0xab1c5ed5, w[7]);
        round!(a, b, c, d, e, f, g, h, 0xd807aa98, w[8]);
        round!(h, a, b, c, d, e, f, g, 0x12835b01, w[9]);
        round!(g, h, a, b, c, d, e, f, 0x243185be, w[10]);
        round!(f, g, h, a, b, c, d, e, 0x550c7dc3, w[11]);
        round!(e, f, g, h, a, b, c, d, 0x72be5d74, w[12]);
        round!(d, e, f, g, h, a, b, c, 0x80deb1fe, w[13]);
        round!(c, d, e, f, g, h, a, b, 0x9bdc06a7, w[14]);
        round!(b, c, d, e, f, g, h, a, 0xc19bf174, w[15]);

        round!(a, b, c, d, e, f, g, h, 0xe49b69c1, w[0], w[14], w[9], w[1]);
        round!(h, a, b, c, d, e, f, g, 0xefbe4786, w[1], w[15], w[10], w[2]);
        round!(g, h, a, b, c, d, e, f, 0x0fc19dc6, w[2], w[0], w[11], w[3]);
        round!(f, g, h, a, b, c, d, e, 0x240ca1cc, w[3], w[1], w[12], w[4]);
        round!(e, f, g, h, a, b, c, d, 0x2de92c6f, w[4], w[2], w[13], w[5]);
        round!(d, e, f, g, h, a, b, c, 0x4a7484aa, w[5], w[3], w[14], w[6]);
        round!(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w[6], w[4], w[15], w[7]);
        round!(b, c, d, e, f, g, h, a, 0x76f988da, w[7], w[5], w[0], w[8]);
        round!(a, b, c, d, e, f, g, h, 0x983e5152, w[8], w[6], w[1], w[9]);
        round!(h, a, b, c, d, e, f, g, 0xa831c66d, w[9], w[7], w[2], w[10]);
        round!(g, h, a, b, c, d, e, f, 0xb00327c8, w[10], w[8], w[3], w[11]);
        round!(f, g, h, a, b, c, d, e, 0xbf597fc7, w[11], w[9], w[4], w[12]);
        round!(e, f, g, h, a, b, c, d, 0xc6e00bf3, w[12], w[10], w[5], w[13]);
        round!(d, e, f, g, h, a, b, c, 0xd5a79147, w[13], w[11], w[6], w[14]);
        round!(c, d, e, f, g, h, a, b, 0x06ca6351, w[14], w[12], w[7], w[15]);
        round!(b, c, d, e, f, g, h, a, 0x14292967, w[15], w[13], w[8], w[0]);

        round!(a, b, c, d, e, f, g, h, 0x27b70a85, w[0], w[14], w[9], w[1]);
        round!(h, a, b, c, d, e, f, g, 0x2e1b2138, w[1], w[15], w[10], w[2]);
        round!(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w[2], w[0], w[11], w[3]);
        round!(f, g, h, a, b, c, d, e, 0x53380d13, w[3], w[1], w[12], w[4]);
        round!(e, f, g, h, a, b, c, d, 0x650a7354, w[4], w[2], w[13], w[5]);
        round!(d, e, f, g, h, a, b, c, 0x766a0abb, w[5], w[3], w[14], w[6]);
        round!(c, d, e, f, g, h, a, b, 0x81c2c92e, w[6], w[4], w[15], w[7]);
        round!(b, c, d, e, f, g, h, a, 0x92722c85, w[7], w[5], w[0], w[8]);
        round!(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w[8], w[6], w[1], w[9]);
        round!(h, a, b, c, d, e, f, g, 0xa81a664b, w[9], w[7], w[2], w[10]);
        round!(g, h, a, b, c, d, e, f, 0xc24b8b70, w[10], w[8], w[3], w[11]);
        round!(f, g, h, a, b, c, d, e, 0xc76c51a3, w[11], w[9], w[4], w[12]);
        round!(e, f, g, h, a, b, c, d, 0xd192e819, w[12], w[10], w[5], w[13]);
        round!(d, e, f, g, h, a, b, c, 0xd6990624, w[13], w[11], w[6], w[14]);
        round!(c, d, e, f, g, h, a, b, 0xf40e3585, w[14], w[12], w[7], w[15]);
        round!(b, c, d, e, f, g, h, a, 0x106aa070, w[15], w[13], w[8], w[0]);

        round!(a, b, c, d, e, f, g, h, 0x19a4c116, w[0], w[14], w[9], w[1]);
        round!(h, a, b, c, d, e, f, g, 0x1e376c08, w[1], w[15], w[10], w[2]);
        round!(g, h, a, b, c, d, e, f, 0x2748774c, w[2], w[0], w[11], w[3]);
        round!(f, g, h, a, b, c, d, e, 0x34b0bcb5, w[3], w[1], w[12], w[4]);
        round!(e, f, g, h, a, b, c, d, 0x391c0cb3, w[4], w[2], w[13], w[5]);
        round!(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w[5], w[3], w[14], w[6]);
        round!(c, d, e, f, g, h, a, b, 0x5b9cca4f, w[6], w[4], w[15], w[7]);
        round!(b, c, d, e, f, g, h, a, 0x682e6ff3, w[7], w[5], w[0], w[8]);
        round!(a, b, c, d, e, f, g, h, 0x748f82ee, w[8], w[6], w[1], w[9]);
        round!(h, a, b, c, d, e, f, g, 0x78a5636f, w[9], w[7], w[2], w[10]);
        round!(g, h, a, b, c, d, e, f, 0x84c87814, w[10], w[8], w[3], w[11]);
        round!(f, g, h, a, b, c, d, e, 0x8cc70208, w[11], w[9], w[4], w[12]);
        round!(e, f, g, h, a, b, c, d, 0x90befffa, w[12], w[10], w[5], w[13]);
        round!(d, e, f, g, h, a, b, c, 0xa4506ceb, w[13], w[11], w[6], w[14]);
        round!(c, d, e, f, g, h, a, b, 0xbef9a3f7, w[14], w[12], w[7], w[15]);
        round!(b, c, d, e, f, g, h, a, 0xc67178f2, w[15], w[13], w[8], w[0]);

        self.h[0] = self.h[0].wrapping_add(a);
        self.h[1] = self.h[1].wrapping_add(b);
        self.h[2] = self.h[2].wrapping_add(c);
        self.h[3] = self.h[3].wrapping_add(d);
        self.h[4] = self.h[4].wrapping_add(e);
        self.h[5] = self.h[5].wrapping_add(f);
        self.h[6] = self.h[6].wrapping_add(g);
        self.h[7] = self.h[7].wrapping_add(h);
    }
}

#[cfg(test)]
mod tests {
    use crate::{sha256, Hash as _, HashEngine};
    use super::*;

    #[test]
    #[cfg(feature = "alloc")]
    fn test() {
        #[derive(Clone)]
        struct Test {
            input: &'static str,
            output: Vec<u8>,
            output_str: &'static str,
        }

        #[rustfmt::skip]
        let tests = vec![
            // Examples from wikipedia
            Test {
                input: "",
                output: vec![
                    0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
                    0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
                    0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
                    0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55,
                ],
                output_str: "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
            },
            Test {
                input: "The quick brown fox jumps over the lazy dog",
                output: vec![
                    0xd7, 0xa8, 0xfb, 0xb3, 0x07, 0xd7, 0x80, 0x94,
                    0x69, 0xca, 0x9a, 0xbc, 0xb0, 0x08, 0x2e, 0x4f,
                    0x8d, 0x56, 0x51, 0xe4, 0x6d, 0x3c, 0xdb, 0x76,
                    0x2d, 0x02, 0xd0, 0xbf, 0x37, 0xc9, 0xe5, 0x92,
                ],
                output_str: "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592",
            },
            Test {
                input: "The quick brown fox jumps over the lazy dog.",
                output: vec![
                    0xef, 0x53, 0x7f, 0x25, 0xc8, 0x95, 0xbf, 0xa7,
                    0x82, 0x52, 0x65, 0x29, 0xa9, 0xb6, 0x3d, 0x97,
                    0xaa, 0x63, 0x15, 0x64, 0xd5, 0xd7, 0x89, 0xc2,
                    0xb7, 0x65, 0x44, 0x8c, 0x86, 0x35, 0xfb, 0x6c,
                ],
                output_str: "ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c",
            },
        ];

        for test in tests {
            // Hash through high-level API, check hex encoding/decoding
            let hash = sha256::Hash::hash(test.input.as_bytes());
            assert_eq!(hash, test.output_str.parse::<sha256::Hash>().expect("parse hex"));
            assert_eq!(&hash[..], &test.output[..]);
            assert_eq!(&hash.to_string(), &test.output_str);

            // Hash through engine, checking that we can input byte by byte
            let mut engine = sha256::Hash::engine();
            for ch in test.input.as_bytes() {
                engine.input(&[*ch]);
            }
            let manual_hash = sha256::Hash::from_engine(engine);
            assert_eq!(hash, manual_hash);
            assert_eq!(hash.to_byte_array()[..].as_ref(), test.output.as_slice());
        }
    }

    #[test]
    fn fmt_roundtrips() {
        let hash = sha256::Hash::hash(b"some arbitrary bytes");
        let hex = format!("{}", hash);
        let rinsed = hex.parse::<sha256::Hash>().expect("failed to parse hex");
        assert_eq!(rinsed, hash)
    }

    #[test]
    #[rustfmt::skip]
    fn midstate() {
        // Test vector obtained by doing an asset issuance on Elements
        let mut engine = sha256::Hash::engine();
        // sha256dhash of outpoint
        // 73828cbc65fd68ab78dc86992b76ae50ae2bf8ceedbe8de0483172f0886219f7:0
        engine.input(&[
            0x9d, 0xd0, 0x1b, 0x56, 0xb1, 0x56, 0x45, 0x14,
            0x3e, 0xad, 0x15, 0x8d, 0xec, 0x19, 0xf8, 0xce,
            0xa9, 0x0b, 0xd0, 0xa9, 0xb2, 0xf8, 0x1d, 0x21,
            0xff, 0xa3, 0xa4, 0xc6, 0x44, 0x81, 0xd4, 0x1c,
        ]);
        // 32 bytes of zeroes representing "new asset"
        engine.input(&[0; 32]);
        assert_eq!(
            engine.midstate(),
            // RPC output
            sha256::Midstate::from_byte_array([
                0x0b, 0xcf, 0xe0, 0xe5, 0x4e, 0x6c, 0xc7, 0xd3,
                0x4f, 0x4f, 0x7c, 0x1d, 0xf0, 0xb0, 0xf5, 0x03,
                0xf2, 0xf7, 0x12, 0x91, 0x2a, 0x06, 0x05, 0xb4,
                0x14, 0xed, 0x33, 0x7f, 0x7f, 0x03, 0x2e, 0x03,
            ])
        );
    }

    #[test]
    fn engine_with_state() {
        let mut engine = sha256::Hash::engine();
        let midstate_engine = sha256::HashEngine::from_midstate(engine.midstate(), 0);
        // Fresh engine and engine initialized with fresh state should have same state
        assert_eq!(engine.h, midstate_engine.h);

        // Midstate changes after writing 64 bytes
        engine.input(&[1; 63]);
        assert_eq!(engine.h, midstate_engine.h);
        engine.input(&[2; 1]);
        assert_ne!(engine.h, midstate_engine.h);

        // Initializing an engine with midstate from another engine should result in
        // both engines producing the same hashes
        let data_vec = vec![vec![3; 1], vec![4; 63], vec![5; 65], vec![6; 66]];
        for data in data_vec {
            let mut engine = engine.clone();
            let mut midstate_engine =
                sha256::HashEngine::from_midstate(engine.midstate(), engine.length);
            assert_eq!(engine.h, midstate_engine.h);
            assert_eq!(engine.length, midstate_engine.length);
            engine.input(&data);
            midstate_engine.input(&data);
            assert_eq!(engine.h, midstate_engine.h);
            let hash1 = sha256::Hash::from_engine(engine);
            let hash2 = sha256::Hash::from_engine(midstate_engine);
            assert_eq!(hash1, hash2);
        }

        // Test that a specific midstate results in a specific hash. Midstate was
        // obtained by applying sha256 to sha256("MuSig coefficient")||sha256("MuSig
        // coefficient").
        #[rustfmt::skip]
        static MIDSTATE: [u8; 32] = [
            0x0f, 0xd0, 0x69, 0x0c, 0xfe, 0xfe, 0xae, 0x97,
            0x99, 0x6e, 0xac, 0x7f, 0x5c, 0x30, 0xd8, 0x64,
            0x8c, 0x4a, 0x05, 0x73, 0xac, 0xa1, 0xa2, 0x2f,
            0x6f, 0x43, 0xb8, 0x01, 0x85, 0xce, 0x27, 0xcd,
        ];
        #[rustfmt::skip]
        static HASH_EXPECTED: [u8; 32] = [
            0x18, 0x84, 0xe4, 0x72, 0x40, 0x4e, 0xf4, 0x5a,
            0xb4, 0x9c, 0x4e, 0xa4, 0x9a, 0xe6, 0x23, 0xa8,
            0x88, 0x52, 0x7f, 0x7d, 0x8a, 0x06, 0x94, 0x20,
            0x8f, 0xf1, 0xf7, 0xa9, 0xd5, 0x69, 0x09, 0x59,
        ];
        let midstate_engine =
            sha256::HashEngine::from_midstate(sha256::Midstate::from_byte_array(MIDSTATE), 64);
        let hash = sha256::Hash::from_engine(midstate_engine);
        assert_eq!(hash, sha256::Hash(HASH_EXPECTED));
    }

    #[test]
    fn const_hash() {
        assert_eq!(Hash::hash(&[]), Hash::const_hash(&[]));

        let mut bytes = Vec::new();
        for i in 0..256 {
            bytes.push(i as u8);
            assert_eq!(
                Hash::hash(&bytes),
                Hash::const_hash(&bytes),
                "hashes don't match for length {}",
                i + 1
            );
        }
    }

    #[test]
    fn const_midstate() {
        assert_eq!(
            Midstate::hash_tag(b"TapLeaf"),
            Midstate([
                156, 224, 228, 230, 124, 17, 108, 57, 56, 179, 202, 242, 195, 15, 80, 137, 211,
                243, 147, 108, 71, 99, 110, 96, 125, 179, 62, 234, 221, 198, 240, 201,
            ])
        )
    }

    #[test]
    fn midstate_fmt_roundtrip() {
        let midstate = Midstate::hash_tag(b"ArbitraryTag");
        let hex = format!("{}", midstate);
        let rinsed = hex.parse::<Midstate>().expect("failed to parse hex");
        assert_eq!(rinsed, midstate)
    }

    #[cfg(feature = "serde")]
    #[test]
    fn sha256_serde() {
        use serde_test::{assert_tokens, Configure, Token};

        #[rustfmt::skip]
        static HASH_BYTES: [u8; 32] = [
            0xef, 0x53, 0x7f, 0x25, 0xc8, 0x95, 0xbf, 0xa7,
            0x82, 0x52, 0x65, 0x29, 0xa9, 0xb6, 0x3d, 0x97,
            0xaa, 0x63, 0x15, 0x64, 0xd5, 0xd7, 0x89, 0xc2,
            0xb7, 0x65, 0x44, 0x8c, 0x86, 0x35, 0xfb, 0x6c,
        ];

        let hash = sha256::Hash::from_slice(&HASH_BYTES).expect("right number of bytes");
        assert_tokens(&hash.compact(), &[Token::BorrowedBytes(&HASH_BYTES[..])]);
        assert_tokens(
            &hash.readable(),
            &[Token::Str("ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c")],
        );
    }

    #[cfg(target_arch = "wasm32")]
    mod wasm_tests {
        extern crate wasm_bindgen_test;
        use self::wasm_bindgen_test::*;
        use super::*;
        #[wasm_bindgen_test]
        fn sha256_tests() {
            test();
            midstate();
            engine_with_state();
        }
    }
}

#[cfg(bench)]
mod benches {
    use test::Bencher;

    use crate::{sha256, Hash, HashEngine};

    #[bench]
    pub fn sha256_10(bh: &mut Bencher) {
        let mut engine = sha256::Hash::engine();
        let bytes = [1u8; 10];
        bh.iter(|| {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha256_1k(bh: &mut Bencher) {
        let mut engine = sha256::Hash::engine();
        let bytes = [1u8; 1024];
        bh.iter(|| {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha256_64k(bh: &mut Bencher) {
        let mut engine = sha256::Hash::engine();
        let bytes = [1u8; 65536];
        bh.iter(|| {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }
}