1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
// Written in 2019 by Andrew Poelstra <apoelstra@wpsoftware.net>
// SPDX-License-Identifier: CC0-1.0
//! Miniscript and Output Descriptors
//!
//! ## Bitcoin Script
//!
//! In Bitcoin, spending policies are defined and enforced by means of a
//! stack-based programming language known as Bitcoin Script. While this
//! language appears to be designed with tractable analysis in mind (e.g.
//! there are no looping or jumping constructions), in practice this is
//! extremely difficult. As a result, typical wallet software supports only
//! a small set of script templates, cannot interoperate with other similar
//! software, and each wallet contains independently written ad-hoc manually
//! verified code to handle these templates. Users who require more complex
//! spending policies, or who want to combine signing infrastructure which
//! was not explicitly designed to work together, are simply out of luck.
//!
//! ## Miniscript
//!
//! Miniscript is an alternative to Bitcoin Script which eliminates these
//! problems. It can be efficiently and simply encoded as Script to ensure
//! that it works on the Bitcoin blockchain, but its design is very different.
//! Essentially, a Miniscript is a monotone function (tree of ANDs, ORs and
//! thresholds) of signature requirements, hash preimage requirements, and
//! timelocks.
//!
//! A [full description of Miniscript is available here](https://bitcoin.sipa.be/miniscript).
//!
//! Miniscript also admits a more human-readable encoding.
//!
//! ## Output Descriptors
//!
//! While spending policies in Bitcoin are entirely defined by Script; there
//! are multiple ways of embedding these Scripts in transaction outputs; for
//! example, P2SH or Segwit v0. These different embeddings are expressed by
//! *Output Descriptors*, [which are described here](https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md).
//!
//! # Examples
//!
//! ## Deriving an address from a descriptor
//!
//! ```rust
//! use std::str::FromStr;
//!
//! let desc = miniscript::Descriptor::<bitcoin::PublicKey>::from_str("\
//! sh(wsh(or_d(\
//! c:pk_k(020e0338c96a8870479f2396c373cc7696ba124e8635d41b0ea581112b67817261),\
//! c:pk_k(0250863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352)\
//! )))\
//! ").unwrap();
//!
//! // Derive the P2SH address.
//! assert_eq!(
//! desc.address(bitcoin::Network::Bitcoin).unwrap().to_string(),
//! "3CJxbQBfWAe1ZkKiGQNEYrioV73ZwvBWns"
//! );
//!
//! // Check whether the descriptor is safe. This checks whether all spend paths are accessible in
//! // the Bitcoin network. It may be possible that some of the spend paths require more than 100
//! // elements in Wsh scripts or they contain a combination of timelock and heightlock.
//! assert!(desc.sanity_check().is_ok());
//!
//! // Estimate the satisfaction cost.
//! // scriptSig: OP_PUSH34 <OP_0 OP_32 <32-byte-hash>>
//! // = (1 + 1 + 1 + 32) * 4 = 140 WU
//! // redeemScript: varint <OP_33 <pk1> OP_CHECKSIG OP_IFDUP OP_NOTIF OP_33 <pk2> OP_CHECKSIG OP_ENDIF>
//! // = 1 + (1 + 33 + 1 + 1 + 1 + 1 + 33 + 1 + 1) = 74 WU
//! // stackItem[Sig]: varint <sig+sighash>
//! // = 1 + 73 = 74 WU
//! // Expected satisfaction weight: 140 + 74 + 74 = 288
//! assert_eq!(desc.max_weight_to_satisfy().unwrap().to_wu(), 288);
//! ```
//!
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
// Experimental features we need.
#![cfg_attr(bench, feature(test))]
// Coding conventions
#![deny(unsafe_code)]
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![deny(dead_code)]
#![deny(unused_imports)]
#![deny(missing_docs)]
// Clippy lints that we have disabled
#![allow(clippy::iter_kv_map)] // https://github.com/rust-lang/rust-clippy/issues/11752
#![allow(clippy::manual_range_contains)] // I hate this lint -asp
#![allow(unexpected_cfgs)] // This one is just batshit.
#[cfg(target_pointer_width = "16")]
compile_error!(
"rust-miniscript currently only supports architectures with pointers wider than 16 bits"
);
#[cfg(not(any(feature = "std", feature = "no-std")))]
compile_error!("at least one of the `std` or `no-std` features must be enabled");
pub use bitcoin;
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;
#[cfg(any(feature = "std", test))]
extern crate core;
#[cfg(feature = "serde")]
pub use actual_serde as serde;
#[cfg(bench)]
extern crate test;
#[macro_use]
mod macros;
#[macro_use]
mod pub_macros;
mod blanket_traits;
pub mod descriptor;
pub mod expression;
pub mod interpreter;
pub mod iter;
pub mod miniscript;
pub mod plan;
pub mod policy;
mod primitives;
pub mod psbt;
#[cfg(test)]
mod test_utils;
mod util;
use core::{fmt, hash, str};
#[cfg(feature = "std")]
use std::error;
use bitcoin::hashes::{hash160, ripemd160, sha256, Hash};
use bitcoin::hex::DisplayHex;
use bitcoin::{script, Opcode};
pub use crate::blanket_traits::FromStrKey;
pub use crate::descriptor::{DefiniteDescriptorKey, Descriptor, DescriptorPublicKey};
pub use crate::expression::ParseThresholdError;
pub use crate::interpreter::Interpreter;
pub use crate::miniscript::analyzable::{AnalysisError, ExtParams};
pub use crate::miniscript::context::{BareCtx, Legacy, ScriptContext, Segwitv0, SigType, Tap};
pub use crate::miniscript::decode::Terminal;
pub use crate::miniscript::satisfy::{Preimage32, Satisfier};
pub use crate::miniscript::{hash256, Miniscript};
use crate::prelude::*;
pub use crate::primitives::absolute_locktime::{AbsLockTime, AbsLockTimeError};
pub use crate::primitives::relative_locktime::{RelLockTime, RelLockTimeError};
pub use crate::primitives::threshold::{Threshold, ThresholdError};
/// Public key trait which can be converted to Hash type
pub trait MiniscriptKey: Clone + Eq + Ord + fmt::Debug + fmt::Display + hash::Hash {
/// Returns true if the pubkey is uncompressed. Defaults to `false`.
fn is_uncompressed(&self) -> bool { false }
/// Returns true if the pubkey is an x-only pubkey. Defaults to `false`.
// This is required to know what in DescriptorPublicKey to know whether the inner
// key in allowed in descriptor context
fn is_x_only_key(&self) -> bool { false }
/// Returns the number of different derivation paths in this key. Only >1 for keys
/// in BIP389 multipath descriptors.
fn num_der_paths(&self) -> usize { 0 }
/// The associated [`bitcoin::hashes::sha256::Hash`] for this [`MiniscriptKey`], used in the
/// sha256 fragment.
type Sha256: Clone + Eq + Ord + fmt::Display + fmt::Debug + hash::Hash;
/// The associated [`miniscript::hash256::Hash`] for this [`MiniscriptKey`], used in the
/// hash256 fragment.
type Hash256: Clone + Eq + Ord + fmt::Display + fmt::Debug + hash::Hash;
/// The associated [`bitcoin::hashes::ripemd160::Hash`] for this [`MiniscriptKey`] type, used
/// in the ripemd160 fragment.
type Ripemd160: Clone + Eq + Ord + fmt::Display + fmt::Debug + hash::Hash;
/// The associated [`bitcoin::hashes::hash160::Hash`] for this [`MiniscriptKey`] type, used in
/// the hash160 fragment.
type Hash160: Clone + Eq + Ord + fmt::Display + fmt::Debug + hash::Hash;
}
impl MiniscriptKey for bitcoin::secp256k1::PublicKey {
type Sha256 = sha256::Hash;
type Hash256 = hash256::Hash;
type Ripemd160 = ripemd160::Hash;
type Hash160 = hash160::Hash;
}
impl MiniscriptKey for bitcoin::PublicKey {
/// Returns the compressed-ness of the underlying secp256k1 key.
fn is_uncompressed(&self) -> bool { !self.compressed }
type Sha256 = sha256::Hash;
type Hash256 = hash256::Hash;
type Ripemd160 = ripemd160::Hash;
type Hash160 = hash160::Hash;
}
impl MiniscriptKey for bitcoin::secp256k1::XOnlyPublicKey {
type Sha256 = sha256::Hash;
type Hash256 = hash256::Hash;
type Ripemd160 = ripemd160::Hash;
type Hash160 = hash160::Hash;
fn is_x_only_key(&self) -> bool { true }
}
impl MiniscriptKey for String {
type Sha256 = String; // specify hashes as string
type Hash256 = String;
type Ripemd160 = String;
type Hash160 = String;
}
/// Trait describing public key types which can be converted to bitcoin pubkeys
pub trait ToPublicKey: MiniscriptKey {
/// Converts an object to a public key
fn to_public_key(&self) -> bitcoin::PublicKey;
/// Convert an object to x-only pubkey
fn to_x_only_pubkey(&self) -> bitcoin::secp256k1::XOnlyPublicKey {
let pk = self.to_public_key();
bitcoin::secp256k1::XOnlyPublicKey::from(pk.inner)
}
/// Obtain the public key hash for this MiniscriptKey
/// Expects an argument to specify the signature type.
/// This would determine whether to serialize the key as 32 byte x-only pubkey
/// or regular public key when computing the hash160
fn to_pubkeyhash(&self, sig_type: SigType) -> hash160::Hash {
match sig_type {
SigType::Ecdsa => hash160::Hash::hash(&self.to_public_key().to_bytes()),
SigType::Schnorr => hash160::Hash::hash(&self.to_x_only_pubkey().serialize()),
}
}
/// Converts the generic associated [`MiniscriptKey::Sha256`] to [`sha256::Hash`]
fn to_sha256(hash: &<Self as MiniscriptKey>::Sha256) -> sha256::Hash;
/// Converts the generic associated [`MiniscriptKey::Hash256`] to [`hash256::Hash`]
fn to_hash256(hash: &<Self as MiniscriptKey>::Hash256) -> hash256::Hash;
/// Converts the generic associated [`MiniscriptKey::Ripemd160`] to [`ripemd160::Hash`]
fn to_ripemd160(hash: &<Self as MiniscriptKey>::Ripemd160) -> ripemd160::Hash;
/// Converts the generic associated [`MiniscriptKey::Hash160`] to [`hash160::Hash`]
fn to_hash160(hash: &<Self as MiniscriptKey>::Hash160) -> hash160::Hash;
}
impl ToPublicKey for bitcoin::PublicKey {
fn to_public_key(&self) -> bitcoin::PublicKey { *self }
fn to_sha256(hash: &sha256::Hash) -> sha256::Hash { *hash }
fn to_hash256(hash: &hash256::Hash) -> hash256::Hash { *hash }
fn to_ripemd160(hash: &ripemd160::Hash) -> ripemd160::Hash { *hash }
fn to_hash160(hash: &hash160::Hash) -> hash160::Hash { *hash }
}
impl ToPublicKey for bitcoin::secp256k1::PublicKey {
fn to_public_key(&self) -> bitcoin::PublicKey { bitcoin::PublicKey::new(*self) }
fn to_sha256(hash: &sha256::Hash) -> sha256::Hash { *hash }
fn to_hash256(hash: &hash256::Hash) -> hash256::Hash { *hash }
fn to_ripemd160(hash: &ripemd160::Hash) -> ripemd160::Hash { *hash }
fn to_hash160(hash: &hash160::Hash) -> hash160::Hash { *hash }
}
impl ToPublicKey for bitcoin::secp256k1::XOnlyPublicKey {
fn to_public_key(&self) -> bitcoin::PublicKey {
// This code should never be used.
// But is implemented for completeness
let mut data: Vec<u8> = vec![0x02];
data.extend(self.serialize().iter());
bitcoin::PublicKey::from_slice(&data)
.expect("Failed to construct 33 Publickey from 0x02 appended x-only key")
}
fn to_x_only_pubkey(&self) -> bitcoin::secp256k1::XOnlyPublicKey { *self }
fn to_sha256(hash: &sha256::Hash) -> sha256::Hash { *hash }
fn to_hash256(hash: &hash256::Hash) -> hash256::Hash { *hash }
fn to_ripemd160(hash: &ripemd160::Hash) -> ripemd160::Hash { *hash }
fn to_hash160(hash: &hash160::Hash) -> hash160::Hash { *hash }
}
/// Describes an object that can translate various keys and hashes from one key to the type
/// associated with the other key. Used by the [`TranslatePk`] trait to do the actual translations.
pub trait Translator<P, Q, E>
where
P: MiniscriptKey,
Q: MiniscriptKey,
{
/// Translates public keys P -> Q.
fn pk(&mut self, pk: &P) -> Result<Q, E>;
/// Provides the translation from P::Sha256 -> Q::Sha256
fn sha256(&mut self, sha256: &P::Sha256) -> Result<Q::Sha256, E>;
/// Provides the translation from P::Hash256 -> Q::Hash256
fn hash256(&mut self, hash256: &P::Hash256) -> Result<Q::Hash256, E>;
/// Translates ripemd160 hashes from P::Ripemd160 -> Q::Ripemd160
fn ripemd160(&mut self, ripemd160: &P::Ripemd160) -> Result<Q::Ripemd160, E>;
/// Translates hash160 hashes from P::Hash160 -> Q::Hash160
fn hash160(&mut self, hash160: &P::Hash160) -> Result<Q::Hash160, E>;
}
/// An enum for representing translation errors
pub enum TranslateErr<E> {
/// Error inside in the underlying key translation
TranslatorErr(E),
/// Error in the final translated structure. In some cases, the translated
/// structure might not be valid under the given context. For example, translating
/// from string keys to x-only keys in wsh descriptors.
OuterError(Error),
}
impl<E> TranslateErr<E> {
/// Enum used to capture errors from the [`Translator`] trait as well as
/// context errors from the translated structure.
/// The errors occurred in translation are captured in the [`TranslateErr::TranslatorErr`]
/// while the errors in the translated structure are captured in the [`TranslateErr::OuterError`]
///
/// As of taproot upgrade: The following rules apply to the translation of descriptors:
/// - Legacy/Bare does not allow x_only keys
/// - SegwitV0 does not allow uncompressed keys and x_only keys
/// - Tapscript does not allow uncompressed keys
/// - Translating into multi-path descriptors should have same number of path
/// for all the keys in the descriptor
///
/// # Panics
///
/// This function will panic if the Error is OutError.
pub fn expect_translator_err(self, msg: &str) -> E {
if let Self::TranslatorErr(v) = self {
v
} else {
panic!("{}", msg)
}
}
}
impl<E> From<E> for TranslateErr<E> {
fn from(v: E) -> Self { Self::TranslatorErr(v) }
}
// Required for unwrap
impl<E: fmt::Debug> fmt::Debug for TranslateErr<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::TranslatorErr(e) => write!(f, "TranslatorErr({:?})", e),
Self::OuterError(e) => write!(f, "OuterError({:?})", e),
}
}
}
/// Converts a descriptor using abstract keys to one using specific keys. Uses translator `t` to do
/// the actual translation function calls.
pub trait TranslatePk<P, Q>
where
P: MiniscriptKey,
Q: MiniscriptKey,
{
/// The associated output type. This must be `Self<Q>`.
type Output;
/// Translates a struct from one generic to another where the translations
/// for Pk are provided by the given [`Translator`].
fn translate_pk<T, E>(&self, translator: &mut T) -> Result<Self::Output, TranslateErr<E>>
where
T: Translator<P, Q, E>;
}
/// Either a key or keyhash, but both contain Pk
// pub struct ForEach<'a, Pk: MiniscriptKey>(&'a Pk);
// impl<'a, Pk: MiniscriptKey<Hash = Pk>> ForEach<'a, Pk> {
// /// Convenience method to avoid distinguishing between keys and hashes when these are the same type
// pub fn as_key(&self) -> &'a Pk {
// self.0
// }
// }
/// Trait describing the ability to iterate over every key
pub trait ForEachKey<Pk: MiniscriptKey> {
/// Run a predicate on every key in the descriptor, returning whether
/// the predicate returned true for every key
fn for_each_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, pred: F) -> bool
where
Pk: 'a;
/// Run a predicate on every key in the descriptor, returning whether
/// the predicate returned true for any key
fn for_any_key<'a, F: FnMut(&'a Pk) -> bool>(&'a self, mut pred: F) -> bool
where
Pk: 'a,
{
!self.for_each_key(|key| !pred(key))
}
}
/// Miniscript
#[derive(Debug, PartialEq)]
pub enum Error {
/// Opcode appeared which is not part of the script subset
InvalidOpcode(Opcode),
/// Some opcode occurred followed by `OP_VERIFY` when it had
/// a `VERIFY` version that should have been used instead
NonMinimalVerify(String),
/// Push was illegal in some context
InvalidPush(Vec<u8>),
/// rust-bitcoin script error
Script(script::Error),
/// rust-bitcoin address error
AddrError(bitcoin::address::ParseError),
/// rust-bitcoin p2sh address error
AddrP2shError(bitcoin::address::P2shError),
/// A `CHECKMULTISIG` opcode was preceded by a number > 20
CmsTooManyKeys(u32),
/// A tapscript multi_a cannot support more than Weight::MAX_BLOCK/32 keys
MultiATooManyKeys(u64),
/// Encountered unprintable character in descriptor
Unprintable(u8),
/// expected character while parsing descriptor; didn't find one
ExpectedChar(char),
/// While parsing backward, hit beginning of script
UnexpectedStart,
/// Got something we were not expecting
Unexpected(String),
/// Name of a fragment contained `:` multiple times
MultiColon(String),
/// Name of a fragment contained `@` but we were not parsing an OR
AtOutsideOr(String),
/// Encountered a wrapping character that we don't recognize
UnknownWrapper(char),
/// Parsed a miniscript and the result was not of type T
NonTopLevel(String),
/// Parsed a miniscript but there were more script opcodes after it
Trailing(String),
/// Could not satisfy a script (fragment) because of a missing signature
MissingSig(bitcoin::PublicKey),
/// General failure to satisfy
CouldNotSatisfy,
/// Typechecking failed
TypeCheck(String),
/// General error in creating descriptor
BadDescriptor(String),
/// Forward-secp related errors
Secp(bitcoin::secp256k1::Error),
#[cfg(feature = "compiler")]
/// Compiler related errors
CompilerError(crate::policy::compiler::CompilerError),
/// Errors related to policy
PolicyError(policy::concrete::PolicyError),
/// Errors related to lifting
LiftError(policy::LiftError),
/// Forward script context related errors
ContextError(miniscript::context::ScriptContextError),
/// Recursion depth exceeded when parsing policy/miniscript from string
MaxRecursiveDepthExceeded,
/// Anything but c:pk(key) (P2PK), c:pk_h(key) (P2PKH), and thresh_m(k,...)
/// up to n=3 is invalid by standardness (bare)
NonStandardBareScript,
/// Analysis Error
AnalysisError(miniscript::analyzable::AnalysisError),
/// Miniscript is equivalent to false. No possible satisfaction
ImpossibleSatisfaction,
/// Bare descriptors don't have any addresses
BareDescriptorAddr,
/// PubKey invalid under current context
PubKeyCtxError(miniscript::decode::KeyParseError, &'static str),
/// No script code for Tr descriptors
TrNoScriptCode,
/// At least two BIP389 key expressions in the descriptor contain tuples of
/// derivation indexes of different lengths.
MultipathDescLenMismatch,
/// Invalid absolute locktime
AbsoluteLockTime(AbsLockTimeError),
/// Invalid absolute locktime
RelativeLockTime(RelLockTimeError),
/// Invalid threshold.
Threshold(ThresholdError),
/// Invalid threshold.
ParseThreshold(ParseThresholdError),
}
// https://github.com/sipa/miniscript/pull/5 for discussion on this number
const MAX_RECURSION_DEPTH: u32 = 402;
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::InvalidOpcode(op) => write!(f, "invalid opcode {}", op),
Error::NonMinimalVerify(ref tok) => write!(f, "{} VERIFY", tok),
Error::InvalidPush(ref push) => {
write!(f, "invalid push {:x}", push.as_hex())
},
Error::Script(ref e) => fmt::Display::fmt(e, f),
Error::AddrError(ref e) => fmt::Display::fmt(e, f),
Error::AddrP2shError(ref e) => fmt::Display::fmt(e, f),
Error::CmsTooManyKeys(n) => write!(f, "checkmultisig with {} keys", n),
Error::Unprintable(x) => write!(f, "unprintable character 0x{:02x}", x),
Error::ExpectedChar(c) => write!(f, "expected {}", c),
Error::UnexpectedStart => f.write_str("unexpected start of script"),
Error::Unexpected(ref s) => write!(f, "unexpected «{}»", s),
Error::MultiColon(ref s) => write!(f, "«{}» has multiple instances of «:»", s),
Error::AtOutsideOr(ref s) => write!(f, "«{}» contains «@» in non-or() context", s),
Error::UnknownWrapper(ch) => write!(f, "unknown wrapper «{}:»", ch),
Error::NonTopLevel(ref s) => write!(f, "non-T miniscript: {}", s),
Error::Trailing(ref s) => write!(f, "trailing tokens: {}", s),
Error::MissingSig(ref pk) => write!(f, "missing signature for key {:?}", pk),
Error::CouldNotSatisfy => f.write_str("could not satisfy"),
Error::TypeCheck(ref e) => write!(f, "typecheck: {}", e),
Error::BadDescriptor(ref e) => write!(f, "Invalid descriptor: {}", e),
Error::Secp(ref e) => fmt::Display::fmt(e, f),
Error::ContextError(ref e) => fmt::Display::fmt(e, f),
#[cfg(feature = "compiler")]
Error::CompilerError(ref e) => fmt::Display::fmt(e, f),
Error::PolicyError(ref e) => fmt::Display::fmt(e, f),
Error::LiftError(ref e) => fmt::Display::fmt(e, f),
Error::MaxRecursiveDepthExceeded => write!(
f,
"Recursive depth over {} not permitted",
MAX_RECURSION_DEPTH
),
Error::NonStandardBareScript => write!(
f,
"Anything but c:pk(key) (P2PK), c:pk_h(key) (P2PKH), and thresh_m(k,...) \
up to n=3 is invalid by standardness (bare).
"
),
Error::AnalysisError(ref e) => e.fmt(f),
Error::ImpossibleSatisfaction => write!(f, "Impossible to satisfy Miniscript"),
Error::BareDescriptorAddr => write!(f, "Bare descriptors don't have address"),
Error::PubKeyCtxError(ref pk, ref ctx) => {
write!(f, "Pubkey error: {} under {} scriptcontext", pk, ctx)
}
Error::MultiATooManyKeys(k) => write!(f, "MultiA too many keys {}", k),
Error::TrNoScriptCode => write!(f, "No script code for Tr descriptors"),
Error::MultipathDescLenMismatch => write!(f, "At least two BIP389 key expressions in the descriptor contain tuples of derivation indexes of different lengths"),
Error::AbsoluteLockTime(ref e) => e.fmt(f),
Error::RelativeLockTime(ref e) => e.fmt(f),
Error::Threshold(ref e) => e.fmt(f),
Error::ParseThreshold(ref e) => e.fmt(f),
}
}
}
#[cfg(feature = "std")]
impl error::Error for Error {
fn cause(&self) -> Option<&dyn error::Error> {
use self::Error::*;
match self {
InvalidOpcode(_)
| NonMinimalVerify(_)
| InvalidPush(_)
| CmsTooManyKeys(_)
| MultiATooManyKeys(_)
| Unprintable(_)
| ExpectedChar(_)
| UnexpectedStart
| Unexpected(_)
| MultiColon(_)
| AtOutsideOr(_)
| UnknownWrapper(_)
| NonTopLevel(_)
| Trailing(_)
| MissingSig(_)
| CouldNotSatisfy
| TypeCheck(_)
| BadDescriptor(_)
| MaxRecursiveDepthExceeded
| NonStandardBareScript
| ImpossibleSatisfaction
| BareDescriptorAddr
| TrNoScriptCode
| MultipathDescLenMismatch => None,
Script(e) => Some(e),
AddrError(e) => Some(e),
AddrP2shError(e) => Some(e),
Secp(e) => Some(e),
#[cfg(feature = "compiler")]
CompilerError(e) => Some(e),
PolicyError(e) => Some(e),
LiftError(e) => Some(e),
ContextError(e) => Some(e),
AnalysisError(e) => Some(e),
PubKeyCtxError(e, _) => Some(e),
AbsoluteLockTime(e) => Some(e),
RelativeLockTime(e) => Some(e),
Threshold(e) => Some(e),
ParseThreshold(e) => Some(e),
}
}
}
#[doc(hidden)]
impl From<miniscript::types::Error> for Error {
fn from(e: miniscript::types::Error) -> Error { Error::TypeCheck(e.to_string()) }
}
#[doc(hidden)]
impl From<policy::LiftError> for Error {
fn from(e: policy::LiftError) -> Error { Error::LiftError(e) }
}
#[doc(hidden)]
impl From<miniscript::context::ScriptContextError> for Error {
fn from(e: miniscript::context::ScriptContextError) -> Error { Error::ContextError(e) }
}
#[doc(hidden)]
impl From<miniscript::analyzable::AnalysisError> for Error {
fn from(e: miniscript::analyzable::AnalysisError) -> Error { Error::AnalysisError(e) }
}
#[doc(hidden)]
impl From<bitcoin::secp256k1::Error> for Error {
fn from(e: bitcoin::secp256k1::Error) -> Error { Error::Secp(e) }
}
#[doc(hidden)]
impl From<bitcoin::address::ParseError> for Error {
fn from(e: bitcoin::address::ParseError) -> Error { Error::AddrError(e) }
}
#[doc(hidden)]
impl From<bitcoin::address::P2shError> for Error {
fn from(e: bitcoin::address::P2shError) -> Error { Error::AddrP2shError(e) }
}
#[doc(hidden)]
#[cfg(feature = "compiler")]
impl From<crate::policy::compiler::CompilerError> for Error {
fn from(e: crate::policy::compiler::CompilerError) -> Error { Error::CompilerError(e) }
}
#[doc(hidden)]
impl From<policy::concrete::PolicyError> for Error {
fn from(e: policy::concrete::PolicyError) -> Error { Error::PolicyError(e) }
}
fn errstr(s: &str) -> Error { Error::Unexpected(s.to_owned()) }
/// The size of an encoding of a number in Script
pub fn script_num_size(n: usize) -> usize {
match n {
n if n <= 0x10 => 1, // OP_n
n if n < 0x80 => 2, // OP_PUSH1 <n>
n if n < 0x8000 => 3, // OP_PUSH2 <n>
n if n < 0x800000 => 4, // OP_PUSH3 <n>
n if n < 0x80000000 => 5, // OP_PUSH4 <n>
_ => 6, // OP_PUSH5 <n>
}
}
/// Returns the size of the smallest push opcode used to push a given number of bytes onto the stack
///
/// For sizes ≤ 75, there are dedicated single-byte opcodes, so the push size is one. Otherwise,
/// if the size can fit into 1, 2 or 4 bytes, we use the `PUSHDATA{1,2,4}` opcode respectively,
/// followed by the actual size encoded in that many bytes.
fn push_opcode_size(script_size: usize) -> usize {
if script_size < 76 {
1
} else if script_size < 0x100 {
2
} else if script_size < 0x10000 {
3
} else {
5
}
}
/// Helper function used by tests
#[cfg(test)]
fn hex_script(s: &str) -> bitcoin::ScriptBuf {
let v: Vec<u8> = bitcoin::hashes::hex::FromHex::from_hex(s).unwrap();
bitcoin::ScriptBuf::from(v)
}
#[cfg(test)]
mod tests {
use core::str::FromStr;
use super::*;
#[test]
fn regression_bitcoin_key_hash() {
use bitcoin::PublicKey;
// Uncompressed key.
let pk = PublicKey::from_str(
"042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133"
).unwrap();
let want = hash160::Hash::from_str("ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a").unwrap();
let got = pk.to_pubkeyhash(SigType::Ecdsa);
assert_eq!(got, want)
}
#[test]
fn regression_secp256k1_key_hash() {
use bitcoin::secp256k1::PublicKey;
// Compressed key.
let pk = PublicKey::from_str(
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af",
)
.unwrap();
let want = hash160::Hash::from_str("9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4").unwrap();
let got = pk.to_pubkeyhash(SigType::Ecdsa);
assert_eq!(got, want)
}
#[test]
fn regression_xonly_key_hash() {
use bitcoin::secp256k1::XOnlyPublicKey;
let pk = XOnlyPublicKey::from_str(
"cc8a4bc64d897bddc5fbc2f670f7a8ba0b386779106cf1223c6fc5d7cd6fc115",
)
.unwrap();
let want = hash160::Hash::from_str("eb8ac65f971ae688a94aeabf223506865e7e08f2").unwrap();
let got = pk.to_pubkeyhash(SigType::Schnorr);
assert_eq!(got, want)
}
}
#[allow(unused_imports)] // this is an internal prelude module; not all imports are used with every feature combination
mod prelude {
// Mutex implementation from LDK
// https://github.com/lightningdevkit/rust-lightning/blob/9bdce47f0e0516e37c89c09f1975dfc06b5870b1/lightning-invoice/src/sync.rs
#[cfg(all(not(feature = "std"), not(test)))]
mod mutex {
use core::cell::{RefCell, RefMut};
use core::ops::{Deref, DerefMut};
pub type LockResult<Guard> = Result<Guard, ()>;
/// `Mutex` is not a real mutex as it cannot be used in a multi-threaded
/// context. `Mutex` is a dummy implementation of [`std::sync::Mutex`]
/// for `no_std` environments.
pub struct Mutex<T: ?Sized> {
inner: RefCell<T>,
}
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: RefMut<'a, T>,
}
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T { self.lock.deref() }
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T { self.lock.deref_mut() }
}
impl<T> Mutex<T> {
pub fn new(inner: T) -> Mutex<T> { Mutex { inner: RefCell::new(inner) } }
pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
Ok(MutexGuard { lock: self.inner.borrow_mut() })
}
}
}
#[cfg(all(not(feature = "std"), not(test)))]
pub use alloc::{
borrow::{Borrow, Cow, ToOwned},
boxed::Box,
collections::{vec_deque::VecDeque, BTreeMap, BTreeSet, BinaryHeap},
rc, slice,
string::{String, ToString},
sync,
vec::Vec,
};
#[cfg(any(feature = "std", test))]
pub use std::{
borrow::{Borrow, Cow, ToOwned},
boxed::Box,
collections::{vec_deque::VecDeque, BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet},
rc, slice,
string::{String, ToString},
sync,
sync::Mutex,
vec::Vec,
};
#[cfg(all(not(feature = "std"), not(test)))]
pub use self::mutex::Mutex;
}