1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
use std::cmp;
use std::collections::VecDeque;
use std::io;
use std::io::Read;
/// This is a byte buffer that is built from a vector
/// of byte vectors. This avoids extra copies when
/// appending a new byte vector, at the expense of
/// more complexity when reading out.
pub struct ChunkVecBuffer {
chunks: VecDeque<Vec<u8>>,
limit: usize,
}
impl ChunkVecBuffer {
pub fn new() -> ChunkVecBuffer {
ChunkVecBuffer {
chunks: VecDeque::new(),
limit: 0,
}
}
/// Sets the upper limit on how many bytes this
/// object can store.
///
/// Setting a lower limit than the currently stored
/// data is not an error.
///
/// A zero limit is interpreted as no limit.
pub fn set_limit(&mut self, new_limit: usize) {
self.limit = new_limit;
}
/// If we're empty
pub fn is_empty(&self) -> bool {
self.chunks.is_empty()
}
/// How many bytes we're storing
pub fn len(&self) -> usize {
let mut len = 0;
for ch in &self.chunks {
len += ch.len();
}
len
}
/// For a proposed append of `len` bytes, how many
/// bytes should we actually append to adhere to the
/// currently set `limit`?
pub fn apply_limit(&self, len: usize) -> usize {
if self.limit == 0 {
len
} else {
let space = self.limit.saturating_sub(self.len());
cmp::min(len, space)
}
}
/// Append a copy of `bytes`, perhaps a prefix if
/// we're near the limit.
pub fn append_limited_copy(&mut self, bytes: &[u8]) -> usize {
let take = self.apply_limit(bytes.len());
self.append(bytes[..take].to_vec());
take
}
/// Take and append the given `bytes`.
pub fn append(&mut self, bytes: Vec<u8>) -> usize {
let len = bytes.len();
if !bytes.is_empty() {
self.chunks.push_back(bytes);
}
len
}
/// Take one of the chunks from this object. This
/// function panics if the object `is_empty`.
pub fn take_one(&mut self) -> Vec<u8> {
self.chunks.pop_front().unwrap()
}
/// Read data out of this object, writing it into `buf`
/// and returning how many bytes were written there.
pub fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut offs = 0;
while offs < buf.len() && !self.is_empty() {
let used = self.chunks[0]
.as_slice()
.read(&mut buf[offs..])?;
self.consume(used);
offs += used;
}
Ok(offs)
}
fn consume(&mut self, mut used: usize) {
while used > 0 && !self.is_empty() {
if used >= self.chunks[0].len() {
used -= self.chunks[0].len();
self.take_one();
} else {
self.chunks[0] = self.chunks[0].split_off(used);
used = 0;
}
}
}
/// Read data out of this object, passing it `wr`
pub fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> {
if self.is_empty() {
return Ok(0);
}
let used = wr.write_vectored(
&self
.chunks
.iter()
.map(|ch| io::IoSlice::new(ch))
.collect::<Vec<io::IoSlice>>(),
)?;
self.consume(used);
Ok(used)
}
}
#[cfg(test)]
mod test {
use super::ChunkVecBuffer;
#[test]
fn short_append_copy_with_limit() {
let mut cvb = ChunkVecBuffer::new();
cvb.set_limit(12);
assert_eq!(cvb.append_limited_copy(b"hello"), 5);
assert_eq!(cvb.append_limited_copy(b"world"), 5);
assert_eq!(cvb.append_limited_copy(b"hello"), 2);
assert_eq!(cvb.append_limited_copy(b"world"), 0);
let mut buf = [0u8; 12];
assert_eq!(cvb.read(&mut buf).unwrap(), 12);
assert_eq!(buf.to_vec(), b"helloworldhe".to_vec());
}
}