1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
// SPDX-License-Identifier: CC0-1.0

//! Proof-of-work related integer types.
//!
//! Provides the [`Work`] and [`Target`] types that are used in proof-of-work calculations. The
//! functions here are designed to be fast, by that we mean it is safe to use them to check headers.
//!

use core::cmp;
use core::fmt::{self, LowerHex, UpperHex};
use core::ops::{Add, Div, Mul, Not, Rem, Shl, Shr, Sub};

use io::{Read, Write};
#[cfg(all(test, mutate))]
use mutagen::mutate;
use units::parse;

use crate::block::Header;
use crate::blockdata::block::BlockHash;
use crate::consensus::encode::{self, Decodable, Encodable};
use crate::consensus::Params;
use crate::error::{ContainsPrefixError, MissingPrefixError, ParseIntError, PrefixedHexError, UnprefixedHexError};

/// Implement traits and methods shared by `Target` and `Work`.
macro_rules! do_impl {
    ($ty:ident) => {
        impl $ty {
            #[doc = "Creates `"]
            #[doc = stringify!($ty)]
            #[doc = "` from a prefixed hex string."]
            pub fn from_hex(s: &str) -> Result<Self, PrefixedHexError> {
                Ok($ty(U256::from_hex(s)?))
            }

            #[doc = "Creates `"]
            #[doc = stringify!($ty)]
            #[doc = "` from an unprefixed hex string."]
            pub fn from_unprefixed_hex(s: &str) -> Result<Self, UnprefixedHexError> {
                Ok($ty(U256::from_unprefixed_hex(s)?))
            }

            #[doc = "Creates `"]
            #[doc = stringify!($ty)]
            #[doc = "` from a big-endian byte array."]
            #[inline]
            pub fn from_be_bytes(bytes: [u8; 32]) -> $ty { $ty(U256::from_be_bytes(bytes)) }

            #[doc = "Creates `"]
            #[doc = stringify!($ty)]
            #[doc = "` from a little-endian byte array."]
            #[inline]
            pub fn from_le_bytes(bytes: [u8; 32]) -> $ty { $ty(U256::from_le_bytes(bytes)) }

            #[doc = "Converts `"]
            #[doc = stringify!($ty)]
            #[doc = "` to a big-endian byte array."]
            #[inline]
            pub fn to_be_bytes(self) -> [u8; 32] { self.0.to_be_bytes() }

            #[doc = "Converts `"]
            #[doc = stringify!($ty)]
            #[doc = "` to a little-endian byte array."]
            #[inline]
            pub fn to_le_bytes(self) -> [u8; 32] { self.0.to_le_bytes() }
        }

        impl fmt::Display for $ty {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter) -> core::fmt::Result {
                fmt::Display::fmt(&self.0, f)
            }
        }

        impl fmt::LowerHex for $ty {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter) -> core::fmt::Result {
                fmt::LowerHex::fmt(&self.0, f)
            }
        }

        impl fmt::UpperHex for $ty {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter) -> core::fmt::Result {
                fmt::UpperHex::fmt(&self.0, f)
            }
        }
    };
}

/// A 256 bit integer representing work.
///
/// Work is a measure of how difficult it is to find a hash below a given [`Target`].
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct Work(U256);

impl Work {
    /// Converts this [`Work`] to [`Target`].
    pub fn to_target(self) -> Target { Target(self.0.inverse()) }

    /// Returns log2 of this work.
    ///
    /// The result inherently suffers from a loss of precision and is, therefore, meant to be
    /// used mainly for informative and displaying purposes, similarly to Bitcoin Core's
    /// `log2_work` output in its logs.
    #[cfg(feature = "std")]
    pub fn log2(self) -> f64 { self.0.to_f64().log2() }
}
do_impl!(Work);

impl Add for Work {
    type Output = Work;
    fn add(self, rhs: Self) -> Self { Work(self.0 + rhs.0) }
}

impl Sub for Work {
    type Output = Work;
    fn sub(self, rhs: Self) -> Self { Work(self.0 - rhs.0) }
}

/// A 256 bit integer representing target.
///
/// The SHA-256 hash of a block's header must be lower than or equal to the current target for the
/// block to be accepted by the network. The lower the target, the more difficult it is to generate
/// a block. (See also [`Work`].)
///
/// ref: <https://en.bitcoin.it/wiki/Target>
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct Target(U256);

impl Target {
    /// When parsing nBits, Bitcoin Core converts a negative target threshold into a target of zero.
    pub const ZERO: Target = Target(U256::ZERO);
    /// The maximum possible target.
    ///
    /// This value is used to calculate difficulty, which is defined as how difficult the current
    /// target makes it to find a block relative to how difficult it would be at the highest
    /// possible target. Remember highest target == lowest difficulty.
    ///
    /// ref: <https://en.bitcoin.it/wiki/Target>
    // In Bitcoind this is ~(u256)0 >> 32 stored as a floating-point type so it gets truncated, hence
    // the low 208 bits are all zero.
    pub const MAX: Self = Target(U256(0xFFFF_u128 << (208 - 128), 0));

    /// The maximum **attainable** target value on mainnet.
    ///
    /// Not all target values are attainable because consensus code uses the compact format to
    /// represent targets (see [`CompactTarget`]).
    pub const MAX_ATTAINABLE_MAINNET: Self = Target(U256(0xFFFF_u128 << (208 - 128), 0));

    /// The proof of work limit on testnet.
    // Taken from Bitcoin Core but had lossy conversion to/from compact form.
    // https://github.com/bitcoin/bitcoin/blob/8105bce5b384c72cf08b25b7c5343622754e7337/src/kernel/chainparams.cpp#L208
    pub const MAX_ATTAINABLE_TESTNET: Self = Target(U256(0xFFFF_u128 << (208 - 128), 0));

    /// The proof of work limit on regtest.
    // Taken from Bitcoin Core but had lossy conversion to/from compact form.
    // https://github.com/bitcoin/bitcoin/blob/8105bce5b384c72cf08b25b7c5343622754e7337/src/kernel/chainparams.cpp#L411
    pub const MAX_ATTAINABLE_REGTEST: Self = Target(U256(0x7FFF_FF00u128 << 96, 0));

    /// The proof of work limit on signet.
    // Taken from Bitcoin Core but had lossy conversion to/from compact form.
    // https://github.com/bitcoin/bitcoin/blob/8105bce5b384c72cf08b25b7c5343622754e7337/src/kernel/chainparams.cpp#L348
    pub const MAX_ATTAINABLE_SIGNET: Self = Target(U256(0x0377_ae00 << 80, 0));

    /// Computes the [`Target`] value from a compact representation.
    ///
    /// ref: <https://developer.bitcoin.org/reference/block_chain.html#target-nbits>
    pub fn from_compact(c: CompactTarget) -> Target {
        let bits = c.0;
        // This is a floating-point "compact" encoding originally used by
        // OpenSSL, which satoshi put into consensus code, so we're stuck
        // with it. The exponent needs to have 3 subtracted from it, hence
        // this goofy decoding code. 3 is due to 3 bytes in the mantissa.
        let (mant, expt) = {
            let unshifted_expt = bits >> 24;
            if unshifted_expt <= 3 {
                ((bits & 0xFFFFFF) >> (8 * (3 - unshifted_expt as usize)), 0)
            } else {
                (bits & 0xFFFFFF, 8 * ((bits >> 24) - 3))
            }
        };

        // The mantissa is signed but may not be negative.
        if mant > 0x7F_FFFF {
            Target::ZERO
        } else {
            Target(U256::from(mant) << expt)
        }
    }

    /// Computes the compact value from a [`Target`] representation.
    ///
    /// The compact form is by definition lossy, this means that
    /// `t == Target::from_compact(t.to_compact_lossy())` does not always hold.
    pub fn to_compact_lossy(self) -> CompactTarget {
        let mut size = (self.0.bits() + 7) / 8;
        let mut compact = if size <= 3 {
            (self.0.low_u64() << (8 * (3 - size))) as u32
        } else {
            let bn = self.0 >> (8 * (size - 3));
            bn.low_u32()
        };

        if (compact & 0x0080_0000) != 0 {
            compact >>= 8;
            size += 1;
        }

        CompactTarget(compact | (size << 24))
    }

    /// Returns true if block hash is less than or equal to this [`Target`].
    ///
    /// Proof-of-work validity for a block requires the hash of the block to be less than or equal
    /// to the target.
    #[cfg_attr(all(test, mutate), mutate)]
    pub fn is_met_by(&self, hash: BlockHash) -> bool {
        use hashes::Hash;
        let hash = U256::from_le_bytes(hash.to_byte_array());
        hash <= self.0
    }

    /// Converts this [`Target`] to [`Work`].
    ///
    /// "Work" is defined as the work done to mine a block with this target value (recorded in the
    /// block header in compact form as nBits). This is not the same as the difficulty to mine a
    /// block with this target (see `Self::difficulty`).
    pub fn to_work(self) -> Work { Work(self.0.inverse()) }

    /// Computes the popular "difficulty" measure for mining.
    ///
    /// Difficulty represents how difficult the current target makes it to find a block, relative to
    /// how difficult it would be at the highest possible target (highest target == lowest difficulty).
    ///
    /// For example, a difficulty of 6,695,826 means that at a given hash rate, it will, on average,
    /// take ~6.6 million times as long to find a valid block as it would at a difficulty of 1, or
    /// alternatively, it will take, again on average, ~6.6 million times as many hashes to find a
    /// valid block
    ///
    /// # Note
    ///
    /// Difficulty is calculated using the following algorithm `max / current` where [max] is
    /// defined for the Bitcoin network and `current` is the current [target] for this block. As
    /// such, a low target implies a high difficulty. Since [`Target`] is represented as a 256 bit
    /// integer but `difficulty()` returns only 128 bits this means for targets below approximately
    /// `0xffff_ffff_ffff_ffff_ffff_ffff` `difficulty()` will saturate at `u128::MAX`.
    ///
    /// # Panics
    ///
    /// Panics if `self` is zero (divide by zero).
    ///
    /// [max]: Target::max
    /// [target]: crate::blockdata::block::Header::target
    #[cfg_attr(all(test, mutate), mutate)]
    pub fn difficulty(&self, params: impl AsRef<Params>) -> u128 {
        // Panic here may be eaiser to debug than during the actual division.
        assert_ne!(self.0, U256::ZERO, "divide by zero");

        let max = params.as_ref().max_attainable_target;
        let d = max.0 / self.0;
        d.saturating_to_u128()
    }

    /// Computes the popular "difficulty" measure for mining and returns a float value of f64.
    ///
    /// See [`difficulty`] for details.
    ///
    /// # Returns
    ///
    /// Returns [`f64::INFINITY`] if `self` is zero (caused by divide by zero).
    ///
    /// [`difficulty`]: Target::difficulty
    #[cfg_attr(all(test, mutate), mutate)]
    pub fn difficulty_float(&self) -> f64 { TARGET_MAX_F64 / self.0.to_f64() }

    /// Computes the minimum valid [`Target`] threshold allowed for a block in which a difficulty
    /// adjustment occurs.
    #[deprecated(since = "0.32.0", note = "use min_transition_threshold instead")]
    pub fn min_difficulty_transition_threshold(&self) -> Self { self.min_transition_threshold() }

    /// Computes the maximum valid [`Target`] threshold allowed for a block in which a difficulty
    /// adjustment occurs.
    #[deprecated(since = "0.32.0", note = "use max_transition_threshold instead")]
    pub fn max_difficulty_transition_threshold(&self) -> Self {
        self.max_transition_threshold_unchecked()
    }

    /// Computes the minimum valid [`Target`] threshold allowed for a block in which a difficulty
    /// adjustment occurs.
    ///
    /// The difficulty can only decrease or increase by a factor of 4 max on each difficulty
    /// adjustment period.
    ///
    /// # Returns
    ///
    /// In line with Bitcoin Core this function may return a target value of zero.
    pub fn min_transition_threshold(&self) -> Self { Self(self.0 >> 2) }

    /// Computes the maximum valid [`Target`] threshold allowed for a block in which a difficulty
    /// adjustment occurs.
    ///
    /// The difficulty can only decrease or increase by a factor of 4 max on each difficulty
    /// adjustment period.
    ///
    /// We also check that the calculated target is not greater than the maximum allowed target,
    /// this value is network specific - hence the `params` parameter.
    pub fn max_transition_threshold(&self, params: impl AsRef<Params>) -> Self {
        let max_attainable = params.as_ref().max_attainable_target;
        cmp::min(self.max_transition_threshold_unchecked(), max_attainable)
    }

    /// Computes the maximum valid [`Target`] threshold allowed for a block in which a difficulty
    /// adjustment occurs.
    ///
    /// The difficulty can only decrease or increase by a factor of 4 max on each difficulty
    /// adjustment period.
    ///
    /// # Returns
    ///
    /// This function may return a value greater than the maximum allowed target for this network.
    ///
    /// The return value should be checked against [`Params::max_attainable_target`] or use one of
    /// the `Target::MAX_ATTAINABLE_FOO` constants.
    pub fn max_transition_threshold_unchecked(&self) -> Self { Self(self.0 << 2) }
}
do_impl!(Target);

/// Encoding of 256-bit target as 32-bit float.
///
/// This is used to encode a target into the block header. Satoshi made this part of consensus code
/// in the original version of Bitcoin, likely copying an idea from OpenSSL.
///
/// OpenSSL's bignum (BN) type has an encoding, which is even called "compact" as in bitcoin, which
/// is exactly this format.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct CompactTarget(u32);

impl CompactTarget {
    /// Creates a `CompactTarget` from an prefixed hex string.
    pub fn from_hex(s: &str) -> Result<Self, PrefixedHexError> {
        let stripped = if let Some(stripped) = s.strip_prefix("0x") {
            stripped
        } else if let Some(stripped) = s.strip_prefix("0X") {
            stripped
        } else {
            return Err(MissingPrefixError::new(s).into());
        };

        let target = parse::hex_u32(stripped)?;
        Ok(Self::from_consensus(target))
    }

    /// Creates a `CompactTarget` from an unprefixed hex string.
    pub fn from_unprefixed_hex(s: &str) -> Result<Self, UnprefixedHexError> {
        if s.starts_with("0x") || s.starts_with("0X") {
            return Err(ContainsPrefixError::new(s).into());
        }
        let lock_time = parse::hex_u32(s)?;
        Ok(Self::from_consensus(lock_time))
    }

    /// Computes the [`CompactTarget`] from a difficulty adjustment.
    ///
    /// ref: <https://github.com/bitcoin/bitcoin/blob/0503cbea9aab47ec0a87d34611e5453158727169/src/pow.cpp>
    ///
    /// Given the previous Target, represented as a [`CompactTarget`], the difficulty is adjusted
    /// by taking the timespan between them, and multipling the current [`CompactTarget`] by a factor
    /// of the net timespan and expected timespan. The [`CompactTarget`] may not adjust by more than
    /// a factor of 4, or adjust beyond the maximum threshold for the network.
    ///
    /// # Note
    ///
    /// Under the consensus rules, the difference in the number of blocks between the headers does
    /// not equate to the `difficulty_adjustment_interval` of [`Params`]. This is due to an off-by-one
    /// error, and, the expected number of blocks in between headers is `difficulty_adjustment_interval - 1`
    /// when calculating the difficulty adjustment.
    ///
    /// Take the example of the first difficulty adjustment. Block 2016 introduces a new [`CompactTarget`],
    /// which takes the net timespan between Block 2015 and Block 0, and recomputes the difficulty.
    ///
    /// # Returns
    ///
    /// The expected [`CompactTarget`] recalculation.
    pub fn from_next_work_required(
        last: CompactTarget,
        timespan: u64,
        params: impl AsRef<Params>,
    ) -> CompactTarget {
        let params = params.as_ref();
        if params.no_pow_retargeting {
            return last;
        }
        // Comments relate to the `pow.cpp` file from Core.
        // ref: <https://github.com/bitcoin/bitcoin/blob/0503cbea9aab47ec0a87d34611e5453158727169/src/pow.cpp>
        let min_timespan = params.pow_target_timespan >> 2; // Lines 56/57
        let max_timespan = params.pow_target_timespan << 2; // Lines 58/59
        let actual_timespan = timespan.clamp(min_timespan, max_timespan);
        let prev_target: Target = last.into();
        let maximum_retarget = prev_target.max_transition_threshold(params); // bnPowLimit
        let retarget = prev_target.0; // bnNew
        let retarget = retarget.mul(actual_timespan.into());
        let retarget = retarget.div(params.pow_target_timespan.into());
        let retarget = Target(retarget);
        if retarget.ge(&maximum_retarget) {
            return maximum_retarget.to_compact_lossy();
        }
        retarget.to_compact_lossy()
    }

    /// Computes the [`CompactTarget`] from a difficulty adjustment,
    /// assuming these are the relevant block headers.
    ///
    /// Given two headers, representing the start and end of a difficulty adjustment epoch,
    /// compute the [`CompactTarget`] based on the net time between them and the current
    /// [`CompactTarget`].
    ///
    /// # Note
    ///
    /// See [`CompactTarget::from_next_work_required`]
    ///
    /// For example, to successfully compute the first difficulty adjustment on the Bitcoin network,
    /// one would pass the header for Block 2015 as `current` and the header for Block 0 as
    /// `last_epoch_boundary`.
    ///
    /// # Returns
    ///
    /// The expected [`CompactTarget`] recalculation.
    pub fn from_header_difficulty_adjustment(
        last_epoch_boundary: Header,
        current: Header,
        params: impl AsRef<Params>,
    ) -> CompactTarget {
        let timespan = current.time - last_epoch_boundary.time;
        let bits = current.bits;
        CompactTarget::from_next_work_required(bits, timespan.into(), params)
    }

    /// Creates a [`CompactTarget`] from a consensus encoded `u32`.
    pub fn from_consensus(bits: u32) -> Self { Self(bits) }

    /// Returns the consensus encoded `u32` representation of this [`CompactTarget`].
    pub fn to_consensus(self) -> u32 { self.0 }
}

impl From<CompactTarget> for Target {
    fn from(c: CompactTarget) -> Self { Target::from_compact(c) }
}

impl Encodable for CompactTarget {
    #[inline]
    fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        self.0.consensus_encode(w)
    }
}

impl Decodable for CompactTarget {
    #[inline]
    fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
        u32::consensus_decode(r).map(CompactTarget)
    }
}

impl LowerHex for CompactTarget {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { LowerHex::fmt(&self.0, f) }
}

impl UpperHex for CompactTarget {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { UpperHex::fmt(&self.0, f) }
}

/// Big-endian 256 bit integer type.
// (high, low): u.0 contains the high bits, u.1 contains the low bits.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
struct U256(u128, u128);

impl U256 {
    const MAX: U256 =
        U256(0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff, 0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff);

    const ZERO: U256 = U256(0, 0);

    const ONE: U256 = U256(0, 1);

    /// Creates a `U256` from a prefixed hex string.
    fn from_hex(s: &str) -> Result<Self, PrefixedHexError> {
        let stripped = if let Some(stripped) = s.strip_prefix("0x") {
            stripped
        } else if let Some(stripped) = s.strip_prefix("0X") {
            stripped
        } else {
            return Err(MissingPrefixError::new(s).into());
        };
        Ok(U256::from_hex_internal(stripped)?)
    }

    /// Creates a `U256` from an unprefixed hex string.
    fn from_unprefixed_hex(s: &str) -> Result<Self, UnprefixedHexError> {
        if s.starts_with("0x") || s.starts_with("0X") {
            return Err(ContainsPrefixError::new(s).into());
        }
        Ok(U256::from_hex_internal(s)?)
    }

    // Caller to ensure `s` does not contain a prefix.
    fn from_hex_internal(s: &str) -> Result<Self, ParseIntError> {
        let (high, low) = if s.len() <= 32 {
            let low = parse::hex_u128(s)?;
            (0, low)
        } else {
            let high_len = s.len() - 32;
            let high_s = &s[..high_len];
            let low_s = &s[high_len..];

            let high = parse::hex_u128(high_s)?;
            let low = parse::hex_u128(low_s)?;
            (high, low)
        };

        Ok(U256(high, low))
    }

    /// Creates `U256` from a big-endian array of `u8`s.
    #[cfg_attr(all(test, mutate), mutate)]
    fn from_be_bytes(a: [u8; 32]) -> U256 {
        let (high, low) = split_in_half(a);
        let big = u128::from_be_bytes(high);
        let little = u128::from_be_bytes(low);
        U256(big, little)
    }

    /// Creates a `U256` from a little-endian array of `u8`s.
    #[cfg_attr(all(test, mutate), mutate)]
    fn from_le_bytes(a: [u8; 32]) -> U256 {
        let (high, low) = split_in_half(a);
        let little = u128::from_le_bytes(high);
        let big = u128::from_le_bytes(low);
        U256(big, little)
    }

    /// Converts `U256` to a big-endian array of `u8`s.
    #[cfg_attr(all(test, mutate), mutate)]
    fn to_be_bytes(self) -> [u8; 32] {
        let mut out = [0; 32];
        out[..16].copy_from_slice(&self.0.to_be_bytes());
        out[16..].copy_from_slice(&self.1.to_be_bytes());
        out
    }

    /// Converts `U256` to a little-endian array of `u8`s.
    #[cfg_attr(all(test, mutate), mutate)]
    fn to_le_bytes(self) -> [u8; 32] {
        let mut out = [0; 32];
        out[..16].copy_from_slice(&self.1.to_le_bytes());
        out[16..].copy_from_slice(&self.0.to_le_bytes());
        out
    }

    /// Calculates 2^256 / (x + 1) where x is a 256 bit unsigned integer.
    ///
    /// 2**256 / (x + 1) == ~x / (x + 1) + 1
    ///
    /// (Equation shamelessly stolen from bitcoind)
    fn inverse(&self) -> U256 {
        // We should never have a target/work of zero so this doesn't matter
        // that much but we define the inverse of 0 as max.
        if self.is_zero() {
            return U256::MAX;
        }
        // We define the inverse of 1 as max.
        if self.is_one() {
            return U256::MAX;
        }
        // We define the inverse of max as 1.
        if self.is_max() {
            return U256::ONE;
        }

        let ret = !*self / self.wrapping_inc();
        ret.wrapping_inc()
    }

    #[cfg_attr(all(test, mutate), mutate)]
    fn is_zero(&self) -> bool { self.0 == 0 && self.1 == 0 }

    #[cfg_attr(all(test, mutate), mutate)]
    fn is_one(&self) -> bool { self.0 == 0 && self.1 == 1 }

    #[cfg_attr(all(test, mutate), mutate)]
    fn is_max(&self) -> bool { self.0 == u128::MAX && self.1 == u128::MAX }

    /// Returns the low 32 bits.
    fn low_u32(&self) -> u32 { self.low_u128() as u32 }

    /// Returns the low 64 bits.
    fn low_u64(&self) -> u64 { self.low_u128() as u64 }

    /// Returns the low 128 bits.
    fn low_u128(&self) -> u128 { self.1 }

    /// Returns this `U256` as a `u128` saturating to `u128::MAX` if `self` is too big.
    // Matagen gives false positive because >= and > both return u128::MAX
    fn saturating_to_u128(&self) -> u128 {
        if *self > U256::from(u128::MAX) {
            u128::MAX
        } else {
            self.low_u128()
        }
    }

    /// Returns the least number of bits needed to represent the number.
    #[cfg_attr(all(test, mutate), mutate)]
    fn bits(&self) -> u32 {
        if self.0 > 0 {
            256 - self.0.leading_zeros()
        } else {
            128 - self.1.leading_zeros()
        }
    }

    /// Wrapping multiplication by `u64`.
    ///
    /// # Returns
    ///
    /// The multiplication result along with a boolean indicating whether an arithmetic overflow
    /// occurred. If an overflow occurred then the wrapped value is returned.
    // mutagen false pos mul_u64: replace `|` with `^` (XOR is same as OR when combined with <<)
    // mutagen false pos mul_u64: replace `|` with `^`
    #[cfg_attr(all(test, mutate), mutate)]
    fn mul_u64(self, rhs: u64) -> (U256, bool) {
        let mut carry: u128 = 0;
        let mut split_le =
            [self.1 as u64, (self.1 >> 64) as u64, self.0 as u64, (self.0 >> 64) as u64];

        for word in &mut split_le {
            // This will not overflow, for proof see https://github.com/rust-bitcoin/rust-bitcoin/pull/1496#issuecomment-1365938572
            let n = carry + u128::from(rhs) * u128::from(*word);

            *word = n as u64; // Intentional truncation, save the low bits
            carry = n >> 64; // and carry the high bits.
        }

        let low = u128::from(split_le[0]) | u128::from(split_le[1]) << 64;
        let high = u128::from(split_le[2]) | u128::from(split_le[3]) << 64;
        (Self(high, low), carry != 0)
    }

    /// Calculates quotient and remainder.
    ///
    /// # Returns
    ///
    /// (quotient, remainder)
    ///
    /// # Panics
    ///
    /// If `rhs` is zero.
    #[cfg_attr(all(test, mutate), mutate)]
    fn div_rem(self, rhs: Self) -> (Self, Self) {
        let mut sub_copy = self;
        let mut shift_copy = rhs;
        let mut ret = [0u128; 2];

        let my_bits = self.bits();
        let your_bits = rhs.bits();

        // Check for division by 0
        assert!(your_bits != 0, "attempted to divide {} by zero", self);

        // Early return in case we are dividing by a larger number than us
        if my_bits < your_bits {
            return (U256::ZERO, sub_copy);
        }

        // Bitwise long division
        let mut shift = my_bits - your_bits;
        shift_copy = shift_copy << shift;
        loop {
            if sub_copy >= shift_copy {
                ret[1 - (shift / 128) as usize] |= 1 << (shift % 128);
                sub_copy = sub_copy.wrapping_sub(shift_copy);
            }
            shift_copy = shift_copy >> 1;
            if shift == 0 {
                break;
            }
            shift -= 1;
        }

        (U256(ret[0], ret[1]), sub_copy)
    }

    /// Calculates `self` + `rhs`
    ///
    /// Returns a tuple of the addition along with a boolean indicating whether an arithmetic
    /// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn overflowing_add(self, rhs: Self) -> (Self, bool) {
        let mut ret = U256::ZERO;
        let mut ret_overflow = false;

        let (high, overflow) = self.0.overflowing_add(rhs.0);
        ret.0 = high;
        ret_overflow |= overflow;

        let (low, overflow) = self.1.overflowing_add(rhs.1);
        ret.1 = low;
        if overflow {
            let (high, overflow) = ret.0.overflowing_add(1);
            ret.0 = high;
            ret_overflow |= overflow;
        }

        (ret, ret_overflow)
    }

    /// Calculates `self` - `rhs`
    ///
    /// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic
    /// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
        let ret = self.wrapping_add(!rhs).wrapping_add(Self::ONE);
        let overflow = rhs > self;
        (ret, overflow)
    }

    /// Calculates the multiplication of `self` and `rhs`.
    ///
    /// Returns a tuple of the multiplication along with a boolean
    /// indicating whether an arithmetic overflow would occur. If an
    /// overflow would have occurred then the wrapped value is returned.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
        let mut ret = U256::ZERO;
        let mut ret_overflow = false;

        for i in 0..3 {
            let to_mul = (rhs >> (64 * i)).low_u64();
            let (mul_res, _) = self.mul_u64(to_mul);
            ret = ret.wrapping_add(mul_res << (64 * i));
        }

        let to_mul = (rhs >> 192).low_u64();
        let (mul_res, overflow) = self.mul_u64(to_mul);
        ret_overflow |= overflow;
        let (sum, overflow) = ret.overflowing_add(mul_res);
        ret = sum;
        ret_overflow |= overflow;

        (ret, ret_overflow)
    }

    /// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the boundary of the
    /// type.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    fn wrapping_add(self, rhs: Self) -> Self {
        let (ret, _overflow) = self.overflowing_add(rhs);
        ret
    }

    /// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the boundary of
    /// the type.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    fn wrapping_sub(self, rhs: Self) -> Self {
        let (ret, _overflow) = self.overflowing_sub(rhs);
        ret
    }

    /// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at the boundary of
    /// the type.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg(test)]
    fn wrapping_mul(self, rhs: Self) -> Self {
        let (ret, _overflow) = self.overflowing_mul(rhs);
        ret
    }

    /// Returns `self` incremented by 1 wrapping around at the boundary of the type.
    #[must_use = "this returns the result of the increment, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn wrapping_inc(&self) -> U256 {
        let mut ret = U256::ZERO;

        ret.1 = self.1.wrapping_add(1);
        if ret.1 == 0 {
            ret.0 = self.0.wrapping_add(1);
        } else {
            ret.0 = self.0;
        }
        ret
    }

    /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes any
    /// high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
    ///
    /// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is
    /// restricted to the range of the type, rather than the bits shifted out of the LHS being
    /// returned to the other end. We do not currently support `rotate_left`.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn wrapping_shl(self, rhs: u32) -> Self {
        let shift = rhs & 0x000000ff;

        let mut ret = U256::ZERO;
        let word_shift = shift >= 128;
        let bit_shift = shift % 128;

        if word_shift {
            ret.0 = self.1 << bit_shift
        } else {
            ret.0 = self.0 << bit_shift;
            if bit_shift > 0 {
                ret.0 += self.1.wrapping_shr(128 - bit_shift);
            }
            ret.1 = self.1 << bit_shift;
        }
        ret
    }

    /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask` removes any
    /// high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
    ///
    /// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is
    /// restricted to the range of the type, rather than the bits shifted out of the LHS being
    /// returned to the other end. We do not currently support `rotate_right`.
    #[must_use = "this returns the result of the operation, without modifying the original"]
    #[cfg_attr(all(test, mutate), mutate)]
    fn wrapping_shr(self, rhs: u32) -> Self {
        let shift = rhs & 0x000000ff;

        let mut ret = U256::ZERO;
        let word_shift = shift >= 128;
        let bit_shift = shift % 128;

        if word_shift {
            ret.1 = self.0 >> bit_shift
        } else {
            ret.0 = self.0 >> bit_shift;
            ret.1 = self.1 >> bit_shift;
            if bit_shift > 0 {
                ret.1 += self.0.wrapping_shl(128 - bit_shift);
            }
        }
        ret
    }

    /// Format `self` to `f` as a decimal when value is known to be non-zero.
    fn fmt_decimal(&self, f: &mut fmt::Formatter) -> fmt::Result {
        const DIGITS: usize = 78; // U256::MAX has 78 base 10 digits.
        const TEN: U256 = U256(0, 10);

        let mut buf = [0_u8; DIGITS];
        let mut i = DIGITS - 1; // We loop backwards.
        let mut cur = *self;

        loop {
            let digit = (cur % TEN).low_u128() as u8; // Cast after rem 10 is lossless.
            buf[i] = digit + b'0';
            cur = cur / TEN;
            if cur.is_zero() {
                break;
            }
            i -= 1;
        }
        let s = core::str::from_utf8(&buf[i..]).expect("digits 0-9 are valid UTF8");
        f.pad_integral(true, "", s)
    }

    /// Convert self to f64.
    #[inline]
    fn to_f64(self) -> f64 {
        // Reference: https://blog.m-ou.se/floats/
        // Step 1: Get leading zeroes
        let leading_zeroes = 256 - self.bits();
        // Step 2: Get msb to be farthest left bit
        let left_aligned = self.wrapping_shl(leading_zeroes);
        // Step 3: Shift msb to fit in lower 53 bits (128-53=75) to get the mantissa
        // * Shifting the border of the 2 u128s to line up with mantissa and dropped bits
        let middle_aligned = left_aligned >> 75;
        // * This is the 53 most significant bits as u128
        let mantissa = middle_aligned.0;
        // Step 4: Dropped bits (except for last 75 bits) are all in the second u128.
        // Bitwise OR the rest of the bits into it, preserving the highest bit,
        // so we take the lower 75 bits of middle_aligned.1 and mix it in. (See blog for explanation)
        let dropped_bits = middle_aligned.1 | (left_aligned.1 & 0x7FF_FFFF_FFFF_FFFF_FFFF);
        // Step 5: The msb of the dropped bits has been preserved, and all other bits
        // if any were set, would be set somewhere in the other 127 bits.
        // If msb of dropped bits is 0, it is mantissa + 0
        // If msb of dropped bits is 1, it is mantissa + 0 only if mantissa lowest bit is 0
        // and other bits of the dropped bits are all 0.
        // (This is why we only care if the other non-msb dropped bits are all 0 or not,
        // so we can just OR them to make sure any bits show up somewhere.)
        let mantissa =
            (mantissa + ((dropped_bits - (dropped_bits >> 127 & !mantissa)) >> 127)) as u64;
        // Step 6: Calculate the exponent
        // If self is 0, exponent should be 0 (special meaning) and mantissa will end up 0 too
        // Otherwise, (255 - n) + 1022 so it simplifies to 1277 - n
        // 1023 and 1022 are the cutoffs for the exponent having the msb next to the decimal point
        let exponent = if self == Self::ZERO { 0 } else { 1277 - leading_zeroes as u64 };
        // Step 7: sign bit is always 0, exponent is shifted into place
        // Use addition instead of bitwise OR to saturate the exponent if mantissa overflows
        f64::from_bits((exponent << 52) + mantissa)
    }
}

// Target::MAX as a float value. Calculated with U256::to_f64.
// This is validated in the unit tests as well.
const TARGET_MAX_F64: f64 = 2.695953529101131e67;

impl<T: Into<u128>> From<T> for U256 {
    fn from(x: T) -> Self { U256(0, x.into()) }
}

impl Add for U256 {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let (res, overflow) = self.overflowing_add(rhs);
        debug_assert!(!overflow, "Addition of U256 values overflowed");
        res
    }
}

impl Sub for U256 {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        let (res, overflow) = self.overflowing_sub(rhs);
        debug_assert!(!overflow, "Subtraction of U256 values overflowed");
        res
    }
}

impl Mul for U256 {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        let (res, overflow) = self.overflowing_mul(rhs);
        debug_assert!(!overflow, "Multiplication of U256 values overflowed");
        res
    }
}

impl Div for U256 {
    type Output = Self;
    fn div(self, rhs: Self) -> Self { self.div_rem(rhs).0 }
}

impl Rem for U256 {
    type Output = Self;
    fn rem(self, rhs: Self) -> Self { self.div_rem(rhs).1 }
}

impl Not for U256 {
    type Output = Self;

    fn not(self) -> Self { U256(!self.0, !self.1) }
}

impl Shl<u32> for U256 {
    type Output = Self;
    fn shl(self, shift: u32) -> U256 { self.wrapping_shl(shift) }
}

impl Shr<u32> for U256 {
    type Output = Self;
    fn shr(self, shift: u32) -> U256 { self.wrapping_shr(shift) }
}

impl fmt::Display for U256 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.is_zero() {
            f.pad_integral(true, "", "0")
        } else {
            self.fmt_decimal(f)
        }
    }
}

impl fmt::Debug for U256 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:#x}", self) }
}

macro_rules! impl_hex {
    ($hex:ident, $case:expr) => {
        impl $hex for U256 {
            fn fmt(&self, f: &mut fmt::Formatter) -> core::fmt::Result {
                hex::fmt_hex_exact!(f, 32, &self.to_be_bytes(), $case)
            }
        }
    };
}
impl_hex!(LowerHex, hex::Case::Lower);
impl_hex!(UpperHex, hex::Case::Upper);

#[cfg(feature = "serde")]
impl crate::serde::Serialize for U256 {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: crate::serde::Serializer,
    {
        struct DisplayHex(U256);

        impl fmt::Display for DisplayHex {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:x}", self.0) }
        }

        if serializer.is_human_readable() {
            serializer.collect_str(&DisplayHex(*self))
        } else {
            let bytes = self.to_be_bytes();
            serializer.serialize_bytes(&bytes)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> crate::serde::Deserialize<'de> for U256 {
    fn deserialize<D: crate::serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
        use hex::FromHex;

        use crate::serde::de;

        if d.is_human_readable() {
            struct HexVisitor;

            impl<'de> de::Visitor<'de> for HexVisitor {
                type Value = U256;

                fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    f.write_str("a 32 byte ASCII hex string")
                }

                fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
                where
                    E: de::Error,
                {
                    if s.len() != 64 {
                        return Err(de::Error::invalid_length(s.len(), &self));
                    }

                    let b = <[u8; 32]>::from_hex(s)
                        .map_err(|_| de::Error::invalid_value(de::Unexpected::Str(s), &self))?;

                    Ok(U256::from_be_bytes(b))
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: de::Error,
                {
                    if let Ok(hex) = core::str::from_utf8(v) {
                        let b = <[u8; 32]>::from_hex(hex).map_err(|_| {
                            de::Error::invalid_value(de::Unexpected::Str(hex), &self)
                        })?;

                        Ok(U256::from_be_bytes(b))
                    } else {
                        Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
                    }
                }
            }
            d.deserialize_str(HexVisitor)
        } else {
            struct BytesVisitor;

            impl<'de> serde::de::Visitor<'de> for BytesVisitor {
                type Value = U256;

                fn expecting(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                    f.write_str("a sequence of bytes")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: serde::de::Error,
                {
                    let b = v.try_into().map_err(|_| de::Error::invalid_length(v.len(), &self))?;
                    Ok(U256::from_be_bytes(b))
                }
            }

            d.deserialize_bytes(BytesVisitor)
        }
    }
}

/// Splits a 32 byte array into two 16 byte arrays.
fn split_in_half(a: [u8; 32]) -> ([u8; 16], [u8; 16]) {
    let mut high = [0_u8; 16];
    let mut low = [0_u8; 16];

    high.copy_from_slice(&a[..16]);
    low.copy_from_slice(&a[16..]);

    (high, low)
}

#[cfg(kani)]
impl kani::Arbitrary for U256 {
    fn any() -> Self {
        let high: u128 = kani::any();
        let low: u128 = kani::any();
        Self(high, low)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    impl<T: Into<u128>> From<T> for Target {
        fn from(x: T) -> Self { Self(U256::from(x)) }
    }

    impl<T: Into<u128>> From<T> for Work {
        fn from(x: T) -> Self { Self(U256::from(x)) }
    }

    impl U256 {
        fn bit_at(&self, index: usize) -> bool {
            if index > 255 {
                panic!("index out of bounds");
            }

            let word = if index < 128 { self.1 } else { self.0 };
            (word & (1 << (index % 128))) != 0
        }
    }

    impl U256 {
        /// Creates a U256 from a big-endian array of u64's
        fn from_array(a: [u64; 4]) -> Self {
            let mut ret = U256::ZERO;
            ret.0 = (a[0] as u128) << 64 ^ (a[1] as u128);
            ret.1 = (a[2] as u128) << 64 ^ (a[3] as u128);
            ret
        }
    }

    #[test]
    fn u256_num_bits() {
        assert_eq!(U256::from(255_u64).bits(), 8);
        assert_eq!(U256::from(256_u64).bits(), 9);
        assert_eq!(U256::from(300_u64).bits(), 9);
        assert_eq!(U256::from(60000_u64).bits(), 16);
        assert_eq!(U256::from(70000_u64).bits(), 17);

        let u = U256::from(u128::MAX) << 1;
        assert_eq!(u.bits(), 129);

        // Try to read the following lines out loud quickly
        let mut shl = U256::from(70000_u64);
        shl = shl << 100;
        assert_eq!(shl.bits(), 117);
        shl = shl << 100;
        assert_eq!(shl.bits(), 217);
        shl = shl << 100;
        assert_eq!(shl.bits(), 0);
    }

    #[test]
    fn u256_bit_at() {
        assert!(!U256::from(10_u64).bit_at(0));
        assert!(U256::from(10_u64).bit_at(1));
        assert!(!U256::from(10_u64).bit_at(2));
        assert!(U256::from(10_u64).bit_at(3));
        assert!(!U256::from(10_u64).bit_at(4));

        let u = U256(0xa000_0000_0000_0000_0000_0000_0000_0000, 0);
        assert!(u.bit_at(255));
        assert!(!u.bit_at(254));
        assert!(u.bit_at(253));
        assert!(!u.bit_at(252));
    }

    #[test]
    fn u256_lower_hex() {
        assert_eq!(
            format!("{:x}", U256::from(0xDEADBEEF_u64)),
            "00000000000000000000000000000000000000000000000000000000deadbeef",
        );
        assert_eq!(
            format!("{:#x}", U256::from(0xDEADBEEF_u64)),
            "0x00000000000000000000000000000000000000000000000000000000deadbeef",
        );
        assert_eq!(
            format!("{:x}", U256::MAX),
            "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
        );
        assert_eq!(
            format!("{:#x}", U256::MAX),
            "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
        );
    }

    #[test]
    fn u256_upper_hex() {
        assert_eq!(
            format!("{:X}", U256::from(0xDEADBEEF_u64)),
            "00000000000000000000000000000000000000000000000000000000DEADBEEF",
        );
        assert_eq!(
            format!("{:#X}", U256::from(0xDEADBEEF_u64)),
            "0x00000000000000000000000000000000000000000000000000000000DEADBEEF",
        );
        assert_eq!(
            format!("{:X}", U256::MAX),
            "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
        );
        assert_eq!(
            format!("{:#X}", U256::MAX),
            "0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
        );
    }

    #[test]
    fn u256_display() {
        assert_eq!(format!("{}", U256::from(100_u32)), "100",);
        assert_eq!(format!("{}", U256::ZERO), "0",);
        assert_eq!(format!("{}", U256::from(u64::MAX)), format!("{}", u64::MAX),);
        assert_eq!(
            format!("{}", U256::MAX),
            "115792089237316195423570985008687907853269984665640564039457584007913129639935",
        );
    }

    macro_rules! check_format {
        ($($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => {
            $(
                #[test]
                fn $test_name() {
                    assert_eq!(format!($format_string, U256::from($val)), $expected);
                }
            )*
        }
    }
    check_format! {
        check_fmt_0, 0_u32, "{}", "0";
        check_fmt_1, 0_u32, "{:2}", " 0";
        check_fmt_2, 0_u32, "{:02}", "00";

        check_fmt_3, 1_u32, "{}", "1";
        check_fmt_4, 1_u32, "{:2}", " 1";
        check_fmt_5, 1_u32, "{:02}", "01";

        check_fmt_10, 10_u32, "{}", "10";
        check_fmt_11, 10_u32, "{:2}", "10";
        check_fmt_12, 10_u32, "{:02}", "10";
        check_fmt_13, 10_u32, "{:3}", " 10";
        check_fmt_14, 10_u32, "{:03}", "010";

        check_fmt_20, 1_u32, "{:<2}", "1 ";
        check_fmt_21, 1_u32, "{:<02}", "01";
        check_fmt_22, 1_u32, "{:>2}", " 1"; // This is default but check it anyways.
        check_fmt_23, 1_u32, "{:>02}", "01";
        check_fmt_24, 1_u32, "{:^3}", " 1 ";
        check_fmt_25, 1_u32, "{:^03}", "001";
        // Sanity check, for integral types precision is ignored.
        check_fmt_30, 0_u32, "{:.1}", "0";
        check_fmt_31, 0_u32, "{:4.1}", "   0";
        check_fmt_32, 0_u32, "{:04.1}", "0000";
    }

    #[test]
    fn u256_comp() {
        let small = U256::from_array([0, 0, 0, 10]);
        let big = U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x8C8C_3EE7_0C64_4118]);
        let bigger = U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x9C8C_3EE7_0C64_4118]);
        let biggest = U256::from_array([1, 0, 0x0209_E737_8231_E632, 0x5C8C_3EE7_0C64_4118]);

        assert!(small < big);
        assert!(big < bigger);
        assert!(bigger < biggest);
        assert!(bigger <= biggest);
        assert!(biggest <= biggest);
        assert!(bigger >= big);
        assert!(bigger >= small);
        assert!(small <= small);
    }

    const WANT: U256 =
        U256(0x1bad_cafe_dead_beef_deaf_babe_2bed_feed, 0xbaad_f00d_defa_ceda_11fe_d2ba_d1c0_ffe0);

    #[rustfmt::skip]
    const BE_BYTES: [u8; 32] = [
        0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed,
        0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0,
    ];

    #[rustfmt::skip]
    const LE_BYTES: [u8; 32] = [
        0xe0, 0xff, 0xc0, 0xd1, 0xba, 0xd2, 0xfe, 0x11, 0xda, 0xce, 0xfa, 0xde, 0x0d, 0xf0, 0xad, 0xba,
        0xed, 0xfe, 0xed, 0x2b, 0xbe, 0xba, 0xaf, 0xde, 0xef, 0xbe, 0xad, 0xde, 0xfe, 0xca, 0xad, 0x1b,
    ];

    // Sanity check that we have the bytes in the correct big-endian order.
    #[test]
    fn sanity_be_bytes() {
        let mut out = [0_u8; 32];
        out[..16].copy_from_slice(&WANT.0.to_be_bytes());
        out[16..].copy_from_slice(&WANT.1.to_be_bytes());
        assert_eq!(out, BE_BYTES);
    }

    // Sanity check that we have the bytes in the correct little-endian order.
    #[test]
    fn sanity_le_bytes() {
        let mut out = [0_u8; 32];
        out[..16].copy_from_slice(&WANT.1.to_le_bytes());
        out[16..].copy_from_slice(&WANT.0.to_le_bytes());
        assert_eq!(out, LE_BYTES);
    }

    #[test]
    fn u256_to_be_bytes() {
        assert_eq!(WANT.to_be_bytes(), BE_BYTES);
    }

    #[test]
    fn u256_from_be_bytes() {
        assert_eq!(U256::from_be_bytes(BE_BYTES), WANT);
    }

    #[test]
    fn u256_to_le_bytes() {
        assert_eq!(WANT.to_le_bytes(), LE_BYTES);
    }

    #[test]
    fn u256_from_le_bytes() {
        assert_eq!(U256::from_le_bytes(LE_BYTES), WANT);
    }

    #[test]
    fn u256_from_u8() {
        let u = U256::from(0xbe_u8);
        assert_eq!(u, U256(0, 0xbe));
    }

    #[test]
    fn u256_from_u16() {
        let u = U256::from(0xbeef_u16);
        assert_eq!(u, U256(0, 0xbeef));
    }

    #[test]
    fn u256_from_u32() {
        let u = U256::from(0xdeadbeef_u32);
        assert_eq!(u, U256(0, 0xdeadbeef));
    }

    #[test]
    fn u256_from_u64() {
        let u = U256::from(0xdead_beef_cafe_babe_u64);
        assert_eq!(u, U256(0, 0xdead_beef_cafe_babe));
    }

    #[test]
    fn u256_from_u128() {
        let u = U256::from(0xdead_beef_cafe_babe_0123_4567_89ab_cdefu128);
        assert_eq!(u, U256(0, 0xdead_beef_cafe_babe_0123_4567_89ab_cdef));
    }

    macro_rules! test_from_unsigned_integer_type {
        ($($test_name:ident, $ty:ident);* $(;)?) => {
            $(
                #[test]
                fn $test_name() {
                    // Internal representation is big-endian.
                    let want = U256(0, 0xAB);

                    let x = 0xAB as $ty;
                    let got = U256::from(x);

                    assert_eq!(got, want);
                }
            )*
        }
    }
    test_from_unsigned_integer_type! {
        from_unsigned_integer_type_u8, u8;
        from_unsigned_integer_type_u16, u16;
        from_unsigned_integer_type_u32, u32;
        from_unsigned_integer_type_u64, u64;
        from_unsigned_integer_type_u128, u128;
    }

    #[test]
    fn u256_from_be_array_u64() {
        let array = [
            0x1bad_cafe_dead_beef,
            0xdeaf_babe_2bed_feed,
            0xbaad_f00d_defa_ceda,
            0x11fe_d2ba_d1c0_ffe0,
        ];

        let uint = U256::from_array(array);
        assert_eq!(uint, WANT);
    }

    #[test]
    fn u256_shift_left() {
        let u = U256::from(1_u32);
        assert_eq!(u << 0, u);
        assert_eq!(u << 1, U256::from(2_u64));
        assert_eq!(u << 63, U256::from(0x8000_0000_0000_0000_u64));
        assert_eq!(u << 64, U256::from_array([0, 0, 0x0000_0000_0000_0001, 0]));
        assert_eq!(u << 127, U256(0, 0x8000_0000_0000_0000_0000_0000_0000_0000));
        assert_eq!(u << 128, U256(1, 0));

        let x = U256(0, 0x8000_0000_0000_0000_0000_0000_0000_0000);
        assert_eq!(x << 1, U256(1, 0));
    }

    #[test]
    fn u256_shift_right() {
        let u = U256(1, 0);
        assert_eq!(u >> 0, u);
        assert_eq!(u >> 1, U256(0, 0x8000_0000_0000_0000_0000_0000_0000_0000));
        assert_eq!(u >> 127, U256(0, 2));
        assert_eq!(u >> 128, U256(0, 1));
    }

    #[test]
    fn u256_arithmetic() {
        let init = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
        let copy = init;

        let add = init.wrapping_add(copy);
        assert_eq!(add, U256::from_array([0, 0, 1, 0xBD5B_7DDF_BD5B_7DDE]));
        // Bitshifts
        let shl = add << 88;
        assert_eq!(shl, U256::from_array([0, 0x01BD_5B7D, 0xDFBD_5B7D_DE00_0000, 0]));
        let shr = shl >> 40;
        assert_eq!(shr, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5B, 0x7DDE_0000_0000_0000]));
        // Increment
        let mut incr = shr;
        incr = incr.wrapping_inc();
        assert_eq!(incr, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5B, 0x7DDE_0000_0000_0001]));
        // Subtraction
        let sub = incr.wrapping_sub(init);
        assert_eq!(sub, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5A, 0x9F30_4110_2152_4112]));
        // Multiplication
        let (mult, _) = sub.mul_u64(300);
        assert_eq!(mult, U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x8C8C_3EE7_0C64_4118]));
        // Division
        assert_eq!(U256::from(105_u32) / U256::from(5_u32), U256::from(21_u32));
        let div = mult / U256::from(300_u32);
        assert_eq!(div, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5A, 0x9F30_4110_2152_4112]));

        assert_eq!(U256::from(105_u32) % U256::from(5_u32), U256::ZERO);
        assert_eq!(U256::from(35498456_u32) % U256::from(3435_u32), U256::from(1166_u32));
        let rem_src = mult.wrapping_mul(U256::from(39842_u32)).wrapping_add(U256::from(9054_u32));
        assert_eq!(rem_src % U256::from(39842_u32), U256::from(9054_u32));
    }

    #[test]
    fn u256_bit_inversion() {
        let v = U256(1, 0);
        let want = U256(
            0xffff_ffff_ffff_ffff_ffff_ffff_ffff_fffe,
            0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff,
        );
        assert_eq!(!v, want);

        let v = U256(0x0c0c_0c0c_0c0c_0c0c_0c0c_0c0c_0c0c_0c0c, 0xeeee_eeee_eeee_eeee);
        let want = U256(
            0xf3f3_f3f3_f3f3_f3f3_f3f3_f3f3_f3f3_f3f3,
            0xffff_ffff_ffff_ffff_1111_1111_1111_1111,
        );
        assert_eq!(!v, want);
    }

    #[test]
    fn u256_mul_u64_by_one() {
        let v = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
        assert_eq!(v, v.mul_u64(1_u64).0);
    }

    #[test]
    fn u256_mul_u64_by_zero() {
        let v = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
        assert_eq!(U256::ZERO, v.mul_u64(0_u64).0);
    }

    #[test]
    fn u256_mul_u64() {
        let u64_val = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);

        let u96_res = u64_val.mul_u64(0xFFFF_FFFF).0;
        let u128_res = u96_res.mul_u64(0xFFFF_FFFF).0;
        let u160_res = u128_res.mul_u64(0xFFFF_FFFF).0;
        let u192_res = u160_res.mul_u64(0xFFFF_FFFF).0;
        let u224_res = u192_res.mul_u64(0xFFFF_FFFF).0;
        let u256_res = u224_res.mul_u64(0xFFFF_FFFF).0;

        assert_eq!(u96_res, U256::from_array([0, 0, 0xDEAD_BEEE, 0xFFFF_FFFF_2152_4111]));
        assert_eq!(
            u128_res,
            U256::from_array([0, 0, 0xDEAD_BEEE_2152_4110, 0x2152_4111_DEAD_BEEF])
        );
        assert_eq!(
            u160_res,
            U256::from_array([0, 0xDEAD_BEED, 0x42A4_8222_0000_0001, 0xBD5B_7DDD_2152_4111])
        );
        assert_eq!(
            u192_res,
            U256::from_array([
                0,
                0xDEAD_BEEC_63F6_C334,
                0xBD5B_7DDF_BD5B_7DDB,
                0x63F6_C333_DEAD_BEEF
            ])
        );
        assert_eq!(
            u224_res,
            U256::from_array([
                0xDEAD_BEEB,
                0x8549_0448_5964_BAAA,
                0xFFFF_FFFB_A69B_4558,
                0x7AB6_FBBB_2152_4111
            ])
        );
        assert_eq!(
            u256_res,
            U256(
                0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
                0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
            )
        );
    }

    #[test]
    fn u256_addition() {
        let x = U256::from(u128::MAX);
        let (add, overflow) = x.overflowing_add(U256::ONE);
        assert!(!overflow);
        assert_eq!(add, U256(1, 0));

        let (add, _) = add.overflowing_add(U256::ONE);
        assert_eq!(add, U256(1, 1));
    }

    #[test]
    fn u256_subtraction() {
        let (sub, overflow) = U256::ONE.overflowing_sub(U256::ONE);
        assert!(!overflow);
        assert_eq!(sub, U256::ZERO);

        let x = U256(1, 0);
        let (sub, overflow) = x.overflowing_sub(U256::ONE);
        assert!(!overflow);
        assert_eq!(sub, U256::from(u128::MAX));
    }

    #[test]
    fn u256_multiplication() {
        let u64_val = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);

        let u128_res = u64_val.wrapping_mul(u64_val);

        assert_eq!(u128_res, U256(0, 0xC1B1_CD13_A4D1_3D46_048D_1354_216D_A321));

        let u256_res = u128_res.wrapping_mul(u128_res);

        assert_eq!(
            u256_res,
            U256(
                0x928D_92B4_D7F5_DF33_4AFC_FF6F_0375_C608,
                0xF5CF_7F36_18C2_C886_F4E1_66AA_D40D_0A41,
            )
        );
    }

    #[test]
    fn u256_multiplication_bits_in_each_word() {
        // Put a digit in the least significant bit of each 64 bit word.
        let u = 1_u128 << 64 | 1_u128;
        let x = U256(u, u);

        // Put a digit in the second least significant bit of each 64 bit word.
        let u = 2_u128 << 64 | 2_u128;
        let y = U256(u, u);

        let (got, overflow) = x.overflowing_mul(y);

        let want = U256(
            0x0000_0000_0000_0008_0000_0000_0000_0008,
            0x0000_0000_0000_0006_0000_0000_0000_0004,
        );
        assert!(!overflow);
        assert_eq!(got, want)
    }

    #[test]
    fn u256_increment() {
        let mut val = U256(
            0xEFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
            0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE,
        );
        val = val.wrapping_inc();
        assert_eq!(
            val,
            U256(
                0xEFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
                0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
            )
        );
        val = val.wrapping_inc();
        assert_eq!(
            val,
            U256(
                0xF000_0000_0000_0000_0000_0000_0000_0000,
                0x0000_0000_0000_0000_0000_0000_0000_0000,
            )
        );

        assert_eq!(U256::MAX.wrapping_inc(), U256::ZERO);
    }

    #[test]
    fn u256_extreme_bitshift() {
        // Shifting a u64 by 64 bits gives an undefined value, so make sure that
        // we're doing the Right Thing here
        let init = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);

        assert_eq!(init << 64, U256(0, 0xDEAD_BEEF_DEAD_BEEF_0000_0000_0000_0000));
        let add = (init << 64).wrapping_add(init);
        assert_eq!(add, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
        assert_eq!(add >> 0, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
        assert_eq!(add << 0, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
        assert_eq!(add >> 64, U256(0, 0x0000_0000_0000_0000_DEAD_BEEF_DEAD_BEEF));
        assert_eq!(
            add << 64,
            U256(0xDEAD_BEEF_DEAD_BEEF, 0xDEAD_BEEF_DEAD_BEEF_0000_0000_0000_0000)
        );
    }

    #[test]
    fn u256_to_from_hex_roundtrips() {
        let val = U256(
            0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
            0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
        );
        let hex = format!("0x{:x}", val);
        let got = U256::from_hex(&hex).expect("failed to parse hex");
        assert_eq!(got, val);
    }

    #[test]
    fn u256_to_from_unprefixed_hex_roundtrips() {
        let val = U256(
            0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
            0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
        );
        let hex = format!("{:x}", val);
        let got = U256::from_unprefixed_hex(&hex).expect("failed to parse hex");
        assert_eq!(got, val);
    }

    #[test]
    fn u256_from_hex_32_characters_long() {
        let hex = "a69b455cd41bb662a69b4555deadbeef";
        let want = U256(0x00, 0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF);
        let got = U256::from_unprefixed_hex(hex).expect("failed to parse hex");
        assert_eq!(got, want);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn u256_serde() {
        let check = |uint, hex| {
            let json = format!("\"{}\"", hex);
            assert_eq!(::serde_json::to_string(&uint).unwrap(), json);
            assert_eq!(::serde_json::from_str::<U256>(&json).unwrap(), uint);

            let bin_encoded = bincode::serialize(&uint).unwrap();
            let bin_decoded: U256 = bincode::deserialize(&bin_encoded).unwrap();
            assert_eq!(bin_decoded, uint);
        };

        check(U256::ZERO, "0000000000000000000000000000000000000000000000000000000000000000");
        check(
            U256::from(0xDEADBEEF_u32),
            "00000000000000000000000000000000000000000000000000000000deadbeef",
        );
        check(
            U256::from_array([0xdd44, 0xcc33, 0xbb22, 0xaa11]),
            "000000000000dd44000000000000cc33000000000000bb22000000000000aa11",
        );
        check(U256::MAX, "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
        check(
            U256(
                0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
                0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
            ),
            "deadbeeaa69b455cd41bb662a69b4550a69b455cd41bb662a69b4555deadbeef",
        );

        assert!(::serde_json::from_str::<U256>(
            "\"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffg\""
        )
        .is_err()); // invalid char
        assert!(::serde_json::from_str::<U256>(
            "\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\""
        )
        .is_err()); // invalid length
        assert!(::serde_json::from_str::<U256>(
            "\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\""
        )
        .is_err()); // invalid length
    }

    #[test]
    fn u256_is_max_correct_negative() {
        let tc = vec![U256::ZERO, U256::ONE, U256::from(u128::MAX)];
        for t in tc {
            assert!(!t.is_max())
        }
    }

    #[test]
    fn u256_is_max_correct_positive() {
        assert!(U256::MAX.is_max());

        let u = u128::MAX;
        assert!(((U256::from(u) << 128) + U256::from(u)).is_max());
    }

    #[test]
    fn compact_target_from_hex_lower() {
        let target = CompactTarget::from_hex("0x010034ab").unwrap();
        assert_eq!(target, CompactTarget(0x010034ab));
    }

    #[test]
    fn compact_target_from_hex_upper() {
        let target = CompactTarget::from_hex("0X010034AB").unwrap();
        assert_eq!(target, CompactTarget(0x010034ab));
    }

    #[test]
    fn compact_target_from_unprefixed_hex_lower() {
        let target = CompactTarget::from_unprefixed_hex("010034ab").unwrap();
        assert_eq!(target, CompactTarget(0x010034ab));
    }

    #[test]
    fn compact_target_from_unprefixed_hex_upper() {
        let target = CompactTarget::from_unprefixed_hex("010034AB").unwrap();
        assert_eq!(target, CompactTarget(0x010034ab));
    }

    #[test]
    fn compact_target_from_hex_invalid_hex_should_err() {
        let hex = "0xzbf9";
        let result = CompactTarget::from_hex(hex);
        assert!(result.is_err());
    }

    #[test]
    fn compact_target_lower_hex_and_upper_hex() {
        assert_eq!(format!("{:08x}", CompactTarget(0x01D0F456)), "01d0f456");
        assert_eq!(format!("{:08X}", CompactTarget(0x01d0f456)), "01D0F456");
    }

    #[test]
    fn compact_target_from_upwards_difficulty_adjustment() {
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(503543726); // Genesis compact target on Signet
        let start_time: u64 = 1598918400; // Genesis block unix time
        let end_time: u64 = 1599332177; // Block 2015 unix time
        let timespan = end_time - start_time; // Faster than expected
        let adjustment = CompactTarget::from_next_work_required(starting_bits, timespan, &params);
        let adjustment_bits = CompactTarget::from_consensus(503394215); // Block 2016 compact target
        assert_eq!(adjustment, adjustment_bits);
    }

    #[test]
    fn compact_target_from_downwards_difficulty_adjustment() {
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(503394215); // Block 2016 compact target
        let start_time: u64 = 1599332844; // Block 2016 unix time
        let end_time: u64 = 1600591200; // Block 4031 unix time
        let timespan = end_time - start_time; // Slower than expected
        let adjustment = CompactTarget::from_next_work_required(starting_bits, timespan, &params);
        let adjustment_bits = CompactTarget::from_consensus(503397348); // Block 4032 compact target
        assert_eq!(adjustment, adjustment_bits);
    }

    #[test]
    fn compact_target_from_upwards_difficulty_adjustment_using_headers() {
        use crate::{block::Version, constants::genesis_block, TxMerkleNode};
        use hashes::Hash;
        let params = Params::new(crate::Network::Signet);
        let epoch_start = genesis_block(&params).header;
        // Block 2015, the only information used are `bits` and `time`
        let current = Header {
            version: Version::ONE,
            prev_blockhash: BlockHash::all_zeros(),
            merkle_root: TxMerkleNode::all_zeros(),
            time: 1599332177,
            bits: epoch_start.bits,
            nonce: epoch_start.nonce
        };
        let adjustment = CompactTarget::from_header_difficulty_adjustment(epoch_start, current, params);
        let adjustment_bits = CompactTarget::from_consensus(503394215); // Block 2016 compact target
        assert_eq!(adjustment, adjustment_bits);
    }

    #[test]
    fn compact_target_from_downwards_difficulty_adjustment_using_headers() {
        use crate::{block::Version, TxMerkleNode};
        use hashes::Hash;
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(503394215); // Block 2016 compact target
        // Block 2016, the only information used is `time`
        let epoch_start = Header {
            version: Version::ONE,
            prev_blockhash: BlockHash::all_zeros(),
            merkle_root: TxMerkleNode::all_zeros(),
            time: 1599332844,
            bits: starting_bits,
            nonce: 0
        };
        // Block 4031, the only information used are `bits` and `time`
        let current = Header {
            version: Version::ONE,
            prev_blockhash: BlockHash::all_zeros(),
            merkle_root: TxMerkleNode::all_zeros(),
            time: 1600591200,
            bits: starting_bits,
            nonce: 0
        };
        let adjustment = CompactTarget::from_header_difficulty_adjustment(epoch_start, current, params);
        let adjustment_bits = CompactTarget::from_consensus(503397348); // Block 4032 compact target
        assert_eq!(adjustment, adjustment_bits);
    }

    #[test]
    fn compact_target_from_maximum_upward_difficulty_adjustment() {
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(503403001);
        let timespan = (0.2 * params.pow_target_timespan as f64) as u64;
        let got = CompactTarget::from_next_work_required(starting_bits, timespan, params);
        let want = Target::from_compact(starting_bits)
            .min_transition_threshold()
            .to_compact_lossy();
        assert_eq!(got, want);
    }

    #[test]
    fn compact_target_from_minimum_downward_difficulty_adjustment() {
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(403403001); // High difficulty for Signet
        let timespan =  5 * params.pow_target_timespan; // Really slow.
        let got = CompactTarget::from_next_work_required(starting_bits, timespan, &params);
        let want = Target::from_compact(starting_bits)
            .max_transition_threshold(params)
            .to_compact_lossy();
        assert_eq!(got, want);
    }

    #[test]
    fn compact_target_from_adjustment_is_max_target() {
        let params = Params::new(crate::Network::Signet);
        let starting_bits = CompactTarget::from_consensus(503543726); // Genesis compact target on Signet
        let timespan =  5 * params.pow_target_timespan; // Really slow.
        let got = CompactTarget::from_next_work_required(starting_bits, timespan, &params);
        let want = params.max_attainable_target.to_compact_lossy();
        assert_eq!(got, want);
    }

    #[test]
    fn target_from_compact() {
        // (nBits, target)
        let tests = vec![
            (0x0100_3456_u32, 0x00_u64), // High bit set.
            (0x0112_3456_u32, 0x12_u64),
            (0x0200_8000_u32, 0x80_u64),
            (0x0500_9234_u32, 0x9234_0000_u64),
            (0x0492_3456_u32, 0x00_u64), // High bit set (0x80 in 0x92).
            (0x0412_3456_u32, 0x1234_5600_u64), // Inverse of above; no high bit.
        ];

        for (n_bits, target) in tests {
            let want = Target::from(target);
            let got = Target::from_compact(CompactTarget::from_consensus(n_bits));
            assert_eq!(got, want);
        }
    }

    #[test]
    fn target_is_met_by_for_target_equals_hash() {
        use std::str::FromStr;

        use hashes::Hash;

        let hash =
            BlockHash::from_str("ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c")
                .expect("failed to parse block hash");
        let target = Target(U256::from_le_bytes(hash.to_byte_array()));
        assert!(target.is_met_by(hash));
    }

    #[test]
    fn max_target_from_compact() {
        // The highest possible target is defined as 0x1d00ffff
        let bits = 0x1d00ffff_u32;
        let want = Target::MAX;
        let got = Target::from_compact(CompactTarget::from_consensus(bits));
        assert_eq!(got, want)
    }

    #[test]
    fn target_difficulty_float() {
        assert_eq!(Target::MAX.difficulty_float(), 1.0_f64);
        assert_eq!(
            Target::from_compact(CompactTarget::from_consensus(0x1c00ffff_u32)).difficulty_float(),
            256.0_f64
        );
        assert_eq!(
            Target::from_compact(CompactTarget::from_consensus(0x1b00ffff_u32)).difficulty_float(),
            65536.0_f64
        );
        assert_eq!(
            Target::from_compact(CompactTarget::from_consensus(0x1a00f3a2_u32)).difficulty_float(),
            17628585.065897066_f64
        );
    }

    #[test]
    fn roundtrip_compact_target() {
        let consensus = 0x1d00_ffff;
        let compact = CompactTarget::from_consensus(consensus);
        let t = Target::from_compact(CompactTarget::from_consensus(consensus));
        assert_eq!(t, Target::from(compact)); // From/Into sanity check.

        let back = t.to_compact_lossy();
        assert_eq!(back, compact); // From/Into sanity check.

        assert_eq!(back.to_consensus(), consensus);
    }

    #[test]
    fn roundtrip_target_work() {
        let target = Target::from(0xdeadbeef_u32);
        let work = target.to_work();
        let back = work.to_target();
        assert_eq!(back, target)
    }

    #[cfg(feature = "std")]
    #[test]
    fn work_log2() {
        // Compare work log2 to historical Bitcoin Core values found in Core logs.
        let tests: Vec<(u128, f64)> = vec![
            // (chainwork, core log2)                // height
            (0x200020002, 33.000022),                // 1
            (0xa97d67041c5e51596ee7, 79.405055),     // 308004
            (0x1dc45d79394baa8ab18b20, 84.895644),   // 418141
            (0x8c85acb73287e335d525b98, 91.134654),  // 596624
            (0x2ef447e01d1642c40a184ada, 93.553183), // 738965
        ];

        for (chainwork, core_log2) in tests {
            // Core log2 in the logs is rounded to 6 decimal places.
            let log2 = (Work::from(chainwork).log2() * 1e6).round() / 1e6;
            assert_eq!(log2, core_log2)
        }

        assert_eq!(Work(U256::ONE).log2(), 0.0);
        assert_eq!(Work(U256::MAX).log2(), 256.0);
    }

    #[test]
    fn u256_zero_min_max_inverse() {
        assert_eq!(U256::MAX.inverse(), U256::ONE);
        assert_eq!(U256::ONE.inverse(), U256::MAX);
        assert_eq!(U256::ZERO.inverse(), U256::MAX);
    }

    #[test]
    fn u256_max_min_inverse_roundtrip() {
        let max = U256::MAX;

        for min in [U256::ZERO, U256::ONE].iter() {
            // lower target means more work required.
            assert_eq!(Target(max).to_work(), Work(U256::ONE));
            assert_eq!(Target(*min).to_work(), Work(max));

            assert_eq!(Work(max).to_target(), Target(U256::ONE));
            assert_eq!(Work(*min).to_target(), Target(max));
        }
    }

    #[test]
    fn u256_wrapping_add_wraps_at_boundary() {
        assert_eq!(U256::MAX.wrapping_add(U256::ONE), U256::ZERO);
        assert_eq!(U256::MAX.wrapping_add(U256::from(2_u8)), U256::ONE);
    }

    #[test]
    fn u256_wrapping_sub_wraps_at_boundary() {
        assert_eq!(U256::ZERO.wrapping_sub(U256::ONE), U256::MAX);
        assert_eq!(U256::ONE.wrapping_sub(U256::from(2_u8)), U256::MAX);
    }

    #[test]
    fn mul_u64_overflows() {
        let (_, overflow) = U256::MAX.mul_u64(2);
        assert!(overflow, "max * 2 should overflow");
    }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn u256_overflowing_addition_panics() { let _ = U256::MAX + U256::ONE; }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn u256_overflowing_subtraction_panics() { let _ = U256::ZERO - U256::ONE; }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn u256_multiplication_by_max_panics() { let _ = U256::MAX * U256::MAX; }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn work_overflowing_addition_panics() { let _ = Work(U256::MAX) + Work(U256::ONE); }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn work_overflowing_subtraction_panics() { let _ = Work(U256::ZERO) - Work(U256::ONE); }

    #[test]
    fn u256_to_f64() {
        // Validate that the Target::MAX value matches the constant also used in difficulty calculation.
        assert_eq!(Target::MAX.0.to_f64(), TARGET_MAX_F64);
        assert_eq!(U256::ZERO.to_f64(), 0.0_f64);
        assert_eq!(U256::ONE.to_f64(), 1.0_f64);
        assert_eq!(U256::MAX.to_f64(), 1.157920892373162e77_f64);
        assert_eq!((U256::MAX >> 1).to_f64(), 5.78960446186581e76_f64);
        assert_eq!((U256::MAX >> 128).to_f64(), 3.402823669209385e38_f64);
        assert_eq!((U256::MAX >> (256 - 54)).to_f64(), 1.8014398509481984e16_f64);
        // 53 bits and below should not use exponents
        assert_eq!((U256::MAX >> (256 - 53)).to_f64(), 9007199254740991.0_f64);
        assert_eq!((U256::MAX >> (256 - 32)).to_f64(), 4294967295.0_f64);
        assert_eq!((U256::MAX >> (256 - 16)).to_f64(), 65535.0_f64);
        assert_eq!((U256::MAX >> (256 - 8)).to_f64(), 255.0_f64);
    }
}

#[cfg(kani)]
mod verification {
    use super::*;

    #[kani::unwind(5)] // mul_u64 loops over 4 64 bit ints so use one more than 4
    #[kani::proof]
    fn check_mul_u64() {
        let x: U256 = kani::any();
        let y: u64 = kani::any();

        let _ = x.mul_u64(y);
    }
}