1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#![allow(unsafe_code)]

use std::convert::TryFrom;
use std::mem::MaybeUninit;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};

use crate::{
    atomic_shim::AtomicU64,
    debug_delay,
    dll::{DoublyLinkedList, Node},
    fastlock::FastLock,
    Guard, PageId,
};

#[cfg(any(test, feature = "lock_free_delays"))]
const MAX_QUEUE_ITEMS: usize = 4;

#[cfg(not(any(test, feature = "lock_free_delays")))]
const MAX_QUEUE_ITEMS: usize = 64;

#[cfg(any(test, feature = "lock_free_delays"))]
const N_SHARDS: usize = 2;

#[cfg(not(any(test, feature = "lock_free_delays")))]
const N_SHARDS: usize = 256;

struct AccessBlock {
    len: AtomicUsize,
    block: [AtomicU64; MAX_QUEUE_ITEMS],
    next: AtomicPtr<AccessBlock>,
}

impl Default for AccessBlock {
    fn default() -> AccessBlock {
        AccessBlock {
            len: AtomicUsize::new(0),
            block: unsafe { MaybeUninit::zeroed().assume_init() },
            next: AtomicPtr::default(),
        }
    }
}

struct AccessQueue {
    writing: AtomicPtr<AccessBlock>,
    full_list: AtomicPtr<AccessBlock>,
}

impl Default for AccessQueue {
    fn default() -> AccessQueue {
        AccessQueue {
            writing: AtomicPtr::new(Box::into_raw(Box::new(
                AccessBlock::default(),
            ))),
            full_list: AtomicPtr::default(),
        }
    }
}

impl AccessQueue {
    fn push(&self, item: CacheAccess) -> bool {
        let mut filled = false;
        loop {
            debug_delay();
            let head = self.writing.load(Ordering::Acquire);
            let block = unsafe { &*head };

            debug_delay();
            let offset = block.len.fetch_add(1, Ordering::Release);

            if offset < MAX_QUEUE_ITEMS {
                debug_delay();
                unsafe {
                    block
                        .block
                        .get_unchecked(offset)
                        .store(item.0, Ordering::Release);
                }
                return filled;
            } else {
                // install new writer
                let new = Box::into_raw(Box::new(AccessBlock::default()));
                debug_delay();
                let prev =
                    self.writing.compare_and_swap(head, new, Ordering::Release);
                if prev != head {
                    // we lost the CAS, free the new item that was
                    // never published to other threads
                    unsafe {
                        drop(Box::from_raw(new));
                    }
                    continue;
                }

                // push the now-full item to the full list for future
                // consumption
                let mut ret;
                let mut full_list_ptr = self.full_list.load(Ordering::Acquire);
                while {
                    // we loop because maybe other threads are pushing stuff too
                    block.next.store(full_list_ptr, Ordering::Release);
                    debug_delay();
                    ret = self.full_list.compare_and_swap(
                        full_list_ptr,
                        head,
                        Ordering::Release,
                    );
                    ret != full_list_ptr
                } {
                    full_list_ptr = ret;
                }
                filled = true;
            }
        }
    }

    fn take<'a>(&self, guard: &'a Guard) -> CacheAccessIter<'a> {
        debug_delay();
        let ptr = self.full_list.swap(std::ptr::null_mut(), Ordering::AcqRel);

        CacheAccessIter { guard, current_offset: 0, current_block: ptr }
    }
}

impl Drop for AccessQueue {
    fn drop(&mut self) {
        debug_delay();
        let writing = self.writing.load(Ordering::Acquire);
        unsafe {
            Box::from_raw(writing);
        }
        debug_delay();
        let mut head = self.full_list.load(Ordering::Acquire);
        while !head.is_null() {
            unsafe {
                debug_delay();
                let next =
                    (*head).next.swap(std::ptr::null_mut(), Ordering::Release);
                Box::from_raw(head);
                head = next;
            }
        }
    }
}

struct CacheAccessIter<'a> {
    guard: &'a Guard,
    current_offset: usize,
    current_block: *mut AccessBlock,
}

impl<'a> Iterator for CacheAccessIter<'a> {
    type Item = CacheAccess;

    fn next(&mut self) -> Option<CacheAccess> {
        while !self.current_block.is_null() {
            let current_block = unsafe { &*self.current_block };

            debug_delay();
            if self.current_offset >= MAX_QUEUE_ITEMS {
                let to_drop_ptr = self.current_block;
                debug_delay();
                self.current_block = current_block.next.load(Ordering::Acquire);
                self.current_offset = 0;
                debug_delay();
                let to_drop = unsafe { Box::from_raw(to_drop_ptr) };
                self.guard.defer(|| to_drop);
                continue;
            }

            let mut next = 0;
            while next == 0 {
                // we spin here because there's a race between bumping
                // the offset and setting the value to something other
                // than 0 (and 0 is an invalid value)
                debug_delay();
                next = current_block.block[self.current_offset]
                    .load(Ordering::Acquire);
            }
            self.current_offset += 1;
            return Some(CacheAccess(next));
        }

        None
    }
}

#[derive(Clone, Copy)]
struct CacheAccess(u64);

impl CacheAccess {
    fn new(pid: PageId, sz: u64) -> CacheAccess {
        let rounded_up_power_of_2 =
            u64::from(sz.next_power_of_two().trailing_zeros());

        assert!(rounded_up_power_of_2 < 256);

        CacheAccess(pid | (rounded_up_power_of_2 << 56))
    }

    const fn decompose(self) -> (PageId, u64) {
        let sz = 1 << (self.0 >> 56);
        let pid = self.0 << 8 >> 8;
        (pid, sz)
    }
}

/// A simple LRU cache.
pub struct Lru {
    shards: Vec<(AccessQueue, FastLock<Shard>)>,
}

unsafe impl Sync for Lru {}

impl Lru {
    /// Instantiates a new `Lru` cache.
    pub(crate) fn new(cache_capacity: u64) -> Self {
        assert!(
            cache_capacity >= 256,
            "Please configure the cache \
             capacity to be at least 256 bytes"
        );
        let shard_capacity = cache_capacity / N_SHARDS as u64;

        let mut shards = Vec::with_capacity(N_SHARDS);
        shards.resize_with(N_SHARDS, || {
            (AccessQueue::default(), FastLock::new(Shard::new(shard_capacity)))
        });

        Self { shards }
    }

    /// Called when an item is accessed. Returns a Vec of items to be
    /// evicted. Uses flat-combining to avoid blocking on what can
    /// be an asynchronous operation.
    ///
    /// layout:
    ///   items:   1 2 3 4 5 6 7 8 9 10
    ///   shards:  1 0 1 0 1 0 1 0 1 0
    ///   shard 0:   2   4   6   8   10
    ///   shard 1: 1   3   5   7   9
    pub(crate) fn accessed(
        &self,
        id: PageId,
        item_size: u64,
        guard: &Guard,
    ) -> Vec<PageId> {
        let mut ret = vec![];
        let shards = self.shards.len() as u64;
        let (shard_idx, item_pos) = (id % shards, id / shards);
        let (stack, shard_mu) = &self.shards[safe_usize(shard_idx)];

        let filled = stack.push(CacheAccess::new(item_pos, item_size));

        if filled {
            // only try to acquire this if
            if let Some(mut shard) = shard_mu.try_lock() {
                let accesses = stack.take(guard);
                for item in accesses {
                    let (item_pos, item_size) = item.decompose();
                    let to_evict =
                        shard.accessed(safe_usize(item_pos), item_size);
                    // map shard internal offsets to global items ids
                    for pos in to_evict {
                        let item = (pos * shards) + shard_idx;
                        ret.push(item);
                    }
                }
            }
        }
        ret
    }
}

#[derive(Clone)]
struct Entry {
    ptr: *mut Node,
    size: u64,
}

impl Default for Entry {
    fn default() -> Self {
        Self { ptr: ptr::null_mut(), size: 0 }
    }
}

struct Shard {
    list: DoublyLinkedList,
    entries: Vec<Entry>,
    capacity: u64,
    size: u64,
}

impl Shard {
    fn new(capacity: u64) -> Self {
        assert!(capacity > 0, "shard capacity must be non-zero");

        Self {
            list: DoublyLinkedList::default(),
            entries: vec![],
            capacity,
            size: 0,
        }
    }

    /// `PageId`s in the shard list are indexes of the entries.
    fn accessed(&mut self, pos: usize, size: u64) -> Vec<PageId> {
        if pos >= self.entries.len() {
            self.entries.resize(pos + 1, Entry::default());
        }

        {
            let entry = &mut self.entries[pos];

            self.size -= entry.size;
            entry.size = size;
            self.size += size;

            if entry.ptr.is_null() {
                entry.ptr = self.list.push_head(PageId::try_from(pos).unwrap());
            } else {
                entry.ptr = self.list.promote(entry.ptr);
            }
        }

        let mut to_evict = vec![];
        while self.size > self.capacity {
            if self.list.len() == 1 {
                // don't evict what we just added
                break;
            }

            let min_pid = self.list.pop_tail().unwrap();
            let min_pid_idx = safe_usize(min_pid);

            self.entries[min_pid_idx].ptr = ptr::null_mut();

            to_evict.push(min_pid);

            self.size -= self.entries[min_pid_idx].size;
            self.entries[min_pid_idx].size = 0;
        }

        to_evict
    }
}

#[inline]
fn safe_usize(value: PageId) -> usize {
    usize::try_from(value).unwrap()
}

#[test]
fn lru_smoke_test() {
    use crate::pin;

    let lru = Lru::new(256);
    for i in 0..1000 {
        let guard = pin();
        lru.accessed(i, 16, &guard);
    }
}