1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// SPDX-License-Identifier: CC0-1.0

#[cfg(doc)]
use core::ops::Deref;

use hex::FromHex;
use secp256k1::{Secp256k1, Verification};

use crate::blockdata::opcodes::all::*;
use crate::blockdata::opcodes::{self, Opcode};
use crate::blockdata::script::witness_program::WitnessProgram;
use crate::blockdata::script::witness_version::WitnessVersion;
use crate::blockdata::script::{
    opcode_to_verify, Builder, Instruction, PushBytes, Script, ScriptHash, WScriptHash,
};
use crate::key::{
    PubkeyHash, PublicKey, TapTweak, TweakedPublicKey, UntweakedPublicKey, WPubkeyHash,
};
use crate::prelude::*;
use crate::taproot::TapNodeHash;

/// An owned, growable script.
///
/// `ScriptBuf` is the most common script type that has the ownership over the contents of the
/// script. It has a close relationship with its borrowed counterpart, [`Script`].
///
/// Just as other similar types, this implements [`Deref`], so [deref coercions] apply. Also note
/// that all the safety/validity restrictions that apply to [`Script`] apply to `ScriptBuf` as well.
///
/// [deref coercions]: https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion
#[derive(Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ScriptBuf(pub(in crate::blockdata::script) Vec<u8>);

impl ScriptBuf {
    /// Creates a new empty script.
    #[inline]
    pub const fn new() -> Self { ScriptBuf(Vec::new()) }

    /// Creates a new empty script with pre-allocated capacity.
    pub fn with_capacity(capacity: usize) -> Self { ScriptBuf(Vec::with_capacity(capacity)) }

    /// Pre-allocates at least `additional_len` bytes if needed.
    ///
    /// Reserves capacity for at least `additional_len` more bytes to be inserted in the given
    /// script. The script may reserve more space to speculatively avoid frequent reallocations.
    /// After calling `reserve`, capacity will be greater than or equal to
    /// `self.len() + additional_len`. Does nothing if capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX bytes`.
    pub fn reserve(&mut self, additional_len: usize) { self.0.reserve(additional_len); }

    /// Pre-allocates exactly `additional_len` bytes if needed.
    ///
    /// Unlike `reserve`, this will not deliberately over-allocate to speculatively avoid frequent
    /// allocations. After calling `reserve_exact`, capacity will be greater than or equal to
    /// `self.len() + additional`. Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore,
    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`](Self::reserve)
    /// if future insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `isize::MAX bytes`.
    pub fn reserve_exact(&mut self, additional_len: usize) { self.0.reserve_exact(additional_len); }

    /// Returns a reference to unsized script.
    pub fn as_script(&self) -> &Script { Script::from_bytes(&self.0) }

    /// Returns a mutable reference to unsized script.
    pub fn as_mut_script(&mut self) -> &mut Script { Script::from_bytes_mut(&mut self.0) }

    /// Creates a new script builder
    pub fn builder() -> Builder { Builder::new() }

    /// Generates P2PK-type of scriptPubkey.
    pub fn new_p2pk(pubkey: &PublicKey) -> Self {
        Builder::new().push_key(pubkey).push_opcode(OP_CHECKSIG).into_script()
    }

    /// Generates P2PKH-type of scriptPubkey.
    pub fn new_p2pkh(pubkey_hash: &PubkeyHash) -> Self {
        Builder::new()
            .push_opcode(OP_DUP)
            .push_opcode(OP_HASH160)
            .push_slice(pubkey_hash)
            .push_opcode(OP_EQUALVERIFY)
            .push_opcode(OP_CHECKSIG)
            .into_script()
    }

    /// Generates P2SH-type of scriptPubkey with a given hash of the redeem script.
    pub fn new_p2sh(script_hash: &ScriptHash) -> Self {
        Builder::new()
            .push_opcode(OP_HASH160)
            .push_slice(script_hash)
            .push_opcode(OP_EQUAL)
            .into_script()
    }

    /// Generates P2WPKH-type of scriptPubkey.
    pub fn new_p2wpkh(pubkey_hash: &WPubkeyHash) -> Self {
        // pubkey hash is 20 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv0)
        ScriptBuf::new_witness_program_unchecked(WitnessVersion::V0, pubkey_hash)
    }

    /// Generates P2WSH-type of scriptPubkey with a given hash of the redeem script.
    pub fn new_p2wsh(script_hash: &WScriptHash) -> Self {
        // script hash is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv0)
        ScriptBuf::new_witness_program_unchecked(WitnessVersion::V0, script_hash)
    }

    /// Generates P2TR for script spending path using an internal public key and some optional
    /// script tree merkle root.
    pub fn new_p2tr<C: Verification>(
        secp: &Secp256k1<C>,
        internal_key: UntweakedPublicKey,
        merkle_root: Option<TapNodeHash>,
    ) -> Self {
        let (output_key, _) = internal_key.tap_tweak(secp, merkle_root);
        // output key is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv1)
        ScriptBuf::new_witness_program_unchecked(WitnessVersion::V1, output_key.serialize())
    }

    /// Generates P2TR for key spending path for a known [`TweakedPublicKey`].
    pub fn new_p2tr_tweaked(output_key: TweakedPublicKey) -> Self {
        // output key is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv1)
        ScriptBuf::new_witness_program_unchecked(WitnessVersion::V1, output_key.serialize())
    }

    /// Generates P2WSH-type of scriptPubkey with a given [`WitnessProgram`].
    pub fn new_witness_program(witness_program: &WitnessProgram) -> Self {
        Builder::new()
            .push_opcode(witness_program.version().into())
            .push_slice(witness_program.program())
            .into_script()
    }

    /// Generates P2WSH-type of scriptPubkey with a given [`WitnessVersion`] and the program bytes.
    /// Does not do any checks on version or program length.
    ///
    /// Convenience method used by `new_p2wpkh`, `new_p2wsh`, `new_p2tr`, and `new_p2tr_tweaked`.
    pub(crate) fn new_witness_program_unchecked<T: AsRef<PushBytes>>(
        version: WitnessVersion,
        program: T,
    ) -> Self {
        let program = program.as_ref();
        debug_assert!(program.len() >= 2 && program.len() <= 40);
        // In segwit v0, the program must be 20 or 32 bytes long.
        debug_assert!(version != WitnessVersion::V0 || program.len() == 20 || program.len() == 32);
        Builder::new().push_opcode(version.into()).push_slice(program).into_script()
    }

    /// Creates the script code used for spending a P2WPKH output.
    ///
    /// The `scriptCode` is described in [BIP143].
    ///
    /// [BIP143]: <https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki>
    pub fn p2wpkh_script_code(wpkh: WPubkeyHash) -> ScriptBuf {
        Builder::new()
            .push_opcode(OP_DUP)
            .push_opcode(OP_HASH160)
            .push_slice(wpkh)
            .push_opcode(OP_EQUALVERIFY)
            .push_opcode(OP_CHECKSIG)
            .into_script()
    }

    /// Generates OP_RETURN-type of scriptPubkey for the given data.
    pub fn new_op_return<T: AsRef<PushBytes>>(data: T) -> Self {
        Builder::new().push_opcode(OP_RETURN).push_slice(data).into_script()
    }

    /// Creates a [`ScriptBuf`] from a hex string.
    pub fn from_hex(s: &str) -> Result<Self, hex::HexToBytesError> {
        let v = Vec::from_hex(s)?;
        Ok(ScriptBuf::from_bytes(v))
    }

    /// Converts byte vector into script.
    ///
    /// This method doesn't (re)allocate.
    pub fn from_bytes(bytes: Vec<u8>) -> Self { ScriptBuf(bytes) }

    /// Converts the script into a byte vector.
    ///
    /// This method doesn't (re)allocate.
    pub fn into_bytes(self) -> Vec<u8> { self.0 }

    /// Adds a single opcode to the script.
    pub fn push_opcode(&mut self, data: Opcode) { self.0.push(data.to_u8()); }

    /// Adds instructions to push some arbitrary data onto the stack.
    pub fn push_slice<T: AsRef<PushBytes>>(&mut self, data: T) {
        let data = data.as_ref();
        self.reserve(Self::reserved_len_for_slice(data.len()));
        self.push_slice_no_opt(data);
    }

    /// Pushes the slice without reserving
    fn push_slice_no_opt(&mut self, data: &PushBytes) {
        // Start with a PUSH opcode
        match data.len() as u64 {
            n if n < opcodes::Ordinary::OP_PUSHDATA1 as u64 => {
                self.0.push(n as u8);
            }
            n if n < 0x100 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA1.to_u8());
                self.0.push(n as u8);
            }
            n if n < 0x10000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA2.to_u8());
                self.0.push((n % 0x100) as u8);
                self.0.push((n / 0x100) as u8);
            }
            n if n < 0x100000000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA4.to_u8());
                self.0.push((n % 0x100) as u8);
                self.0.push(((n / 0x100) % 0x100) as u8);
                self.0.push(((n / 0x10000) % 0x100) as u8);
                self.0.push((n / 0x1000000) as u8);
            }
            _ => panic!("tried to put a 4bn+ sized object into a script!"),
        }
        // Then push the raw bytes
        self.0.extend_from_slice(data.as_bytes());
    }

    /// Computes the sum of `len` and the length of an appropriate push opcode.
    pub(in crate::blockdata::script) fn reserved_len_for_slice(len: usize) -> usize {
        len + match len {
            0..=0x4b => 1,
            0x4c..=0xff => 2,
            0x100..=0xffff => 3,
            // we don't care about oversized, the other fn will panic anyway
            _ => 5,
        }
    }

    /// Add a single instruction to the script.
    ///
    /// ## Panics
    ///
    /// The method panics if the instruction is a data push with length greater or equal to
    /// 0x100000000.
    pub fn push_instruction(&mut self, instruction: Instruction<'_>) {
        match instruction {
            Instruction::Op(opcode) => self.push_opcode(opcode),
            Instruction::PushBytes(bytes) => self.push_slice(bytes),
        }
    }

    /// Like push_instruction, but avoids calling `reserve` to not re-check the length.
    pub fn push_instruction_no_opt(&mut self, instruction: Instruction<'_>) {
        match instruction {
            Instruction::Op(opcode) => self.push_opcode(opcode),
            Instruction::PushBytes(bytes) => self.push_slice_no_opt(bytes),
        }
    }

    /// Adds an `OP_VERIFY` to the script or replaces the last opcode with VERIFY form.
    ///
    /// Some opcodes such as `OP_CHECKSIG` have a verify variant that works as if `VERIFY` was
    /// in the script right after. To save space this function appends `VERIFY` only if
    /// the most-recently-added opcode *does not* have an alternate `VERIFY` form. If it does
    /// the last opcode is replaced. E.g., `OP_CHECKSIG` will become `OP_CHECKSIGVERIFY`.
    ///
    /// Note that existing `OP_*VERIFY` opcodes do not lead to the instruction being ignored
    /// because `OP_VERIFY` consumes an item from the stack so ignoring them would change the
    /// semantics.
    ///
    /// This function needs to iterate over the script to find the last instruction. Prefer
    /// `Builder` if you're creating the script from scratch or if you want to push `OP_VERIFY`
    /// multiple times.
    pub fn scan_and_push_verify(&mut self) { self.push_verify(self.last_opcode()); }

    /// Adds an `OP_VERIFY` to the script or changes the most-recently-added opcode to `VERIFY`
    /// alternative.
    ///
    /// See the public fn [`Self::scan_and_push_verify`] to learn more.
    pub(in crate::blockdata::script) fn push_verify(&mut self, last_opcode: Option<Opcode>) {
        match opcode_to_verify(last_opcode) {
            Some(opcode) => {
                self.0.pop();
                self.push_opcode(opcode);
            }
            None => self.push_opcode(OP_VERIFY),
        }
    }

    /// Converts this `ScriptBuf` into a [boxed](Box) [`Script`].
    ///
    /// This method reallocates if the capacity is greater than length of the script but should not
    /// when they are equal. If you know beforehand that you need to create a script of exact size
    /// use [`reserve_exact`](Self::reserve_exact) before adding data to the script so that the
    /// reallocation can be avoided.
    #[must_use = "`self` will be dropped if the result is not used"]
    #[inline]
    pub fn into_boxed_script(self) -> Box<Script> {
        // Copied from PathBuf::into_boxed_path
        let rw = Box::into_raw(self.0.into_boxed_slice()) as *mut Script;
        unsafe { Box::from_raw(rw) }
    }
}

impl<'a> core::iter::FromIterator<Instruction<'a>> for ScriptBuf {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = Instruction<'a>>,
    {
        let mut script = ScriptBuf::new();
        script.extend(iter);
        script
    }
}

impl<'a> Extend<Instruction<'a>> for ScriptBuf {
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = Instruction<'a>>,
    {
        let iter = iter.into_iter();
        // Most of Bitcoin scripts have only a few opcodes, so we can avoid reallocations in many
        // cases.
        if iter.size_hint().1.map(|max| max < 6).unwrap_or(false) {
            let mut iter = iter.fuse();
            // `MaybeUninit` might be faster but we don't want to introduce more `unsafe` than
            // required.
            let mut head = [None; 5];
            let mut total_size = 0;
            for (head, instr) in head.iter_mut().zip(&mut iter) {
                total_size += instr.script_serialized_len();
                *head = Some(instr);
            }
            // Incorrect impl of `size_hint` breaks `Iterator` contract so we're free to panic.
            assert!(
                iter.next().is_none(),
                "Buggy implementation of `Iterator` on {} returns invalid upper bound",
                core::any::type_name::<T::IntoIter>()
            );
            self.reserve(total_size);
            for instr in head.iter().cloned().flatten() {
                self.push_instruction_no_opt(instr);
            }
        } else {
            for instr in iter {
                self.push_instruction(instr);
            }
        }
    }
}