1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
// SPDX-License-Identifier: CC0-1.0
#[cfg(doc)]
use core::ops::Deref;
use hex::FromHex;
use secp256k1::{Secp256k1, Verification};
use crate::blockdata::opcodes::all::*;
use crate::blockdata::opcodes::{self, Opcode};
use crate::blockdata::script::witness_program::WitnessProgram;
use crate::blockdata::script::witness_version::WitnessVersion;
use crate::blockdata::script::{
opcode_to_verify, Builder, Instruction, PushBytes, Script, ScriptHash, WScriptHash,
};
use crate::key::{
PubkeyHash, PublicKey, TapTweak, TweakedPublicKey, UntweakedPublicKey, WPubkeyHash,
};
use crate::prelude::*;
use crate::taproot::TapNodeHash;
/// An owned, growable script.
///
/// `ScriptBuf` is the most common script type that has the ownership over the contents of the
/// script. It has a close relationship with its borrowed counterpart, [`Script`].
///
/// Just as other similar types, this implements [`Deref`], so [deref coercions] apply. Also note
/// that all the safety/validity restrictions that apply to [`Script`] apply to `ScriptBuf` as well.
///
/// [deref coercions]: https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion
#[derive(Default, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ScriptBuf(pub(in crate::blockdata::script) Vec<u8>);
impl ScriptBuf {
/// Creates a new empty script.
#[inline]
pub const fn new() -> Self { ScriptBuf(Vec::new()) }
/// Creates a new empty script with pre-allocated capacity.
pub fn with_capacity(capacity: usize) -> Self { ScriptBuf(Vec::with_capacity(capacity)) }
/// Pre-allocates at least `additional_len` bytes if needed.
///
/// Reserves capacity for at least `additional_len` more bytes to be inserted in the given
/// script. The script may reserve more space to speculatively avoid frequent reallocations.
/// After calling `reserve`, capacity will be greater than or equal to
/// `self.len() + additional_len`. Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX bytes`.
pub fn reserve(&mut self, additional_len: usize) { self.0.reserve(additional_len); }
/// Pre-allocates exactly `additional_len` bytes if needed.
///
/// Unlike `reserve`, this will not deliberately over-allocate to speculatively avoid frequent
/// allocations. After calling `reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore,
/// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`](Self::reserve)
/// if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX bytes`.
pub fn reserve_exact(&mut self, additional_len: usize) { self.0.reserve_exact(additional_len); }
/// Returns a reference to unsized script.
pub fn as_script(&self) -> &Script { Script::from_bytes(&self.0) }
/// Returns a mutable reference to unsized script.
pub fn as_mut_script(&mut self) -> &mut Script { Script::from_bytes_mut(&mut self.0) }
/// Creates a new script builder
pub fn builder() -> Builder { Builder::new() }
/// Generates P2PK-type of scriptPubkey.
pub fn new_p2pk(pubkey: &PublicKey) -> Self {
Builder::new().push_key(pubkey).push_opcode(OP_CHECKSIG).into_script()
}
/// Generates P2PKH-type of scriptPubkey.
pub fn new_p2pkh(pubkey_hash: &PubkeyHash) -> Self {
Builder::new()
.push_opcode(OP_DUP)
.push_opcode(OP_HASH160)
.push_slice(pubkey_hash)
.push_opcode(OP_EQUALVERIFY)
.push_opcode(OP_CHECKSIG)
.into_script()
}
/// Generates P2SH-type of scriptPubkey with a given hash of the redeem script.
pub fn new_p2sh(script_hash: &ScriptHash) -> Self {
Builder::new()
.push_opcode(OP_HASH160)
.push_slice(script_hash)
.push_opcode(OP_EQUAL)
.into_script()
}
/// Generates P2WPKH-type of scriptPubkey.
pub fn new_p2wpkh(pubkey_hash: &WPubkeyHash) -> Self {
// pubkey hash is 20 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv0)
ScriptBuf::new_witness_program_unchecked(WitnessVersion::V0, pubkey_hash)
}
/// Generates P2WSH-type of scriptPubkey with a given hash of the redeem script.
pub fn new_p2wsh(script_hash: &WScriptHash) -> Self {
// script hash is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv0)
ScriptBuf::new_witness_program_unchecked(WitnessVersion::V0, script_hash)
}
/// Generates P2TR for script spending path using an internal public key and some optional
/// script tree merkle root.
pub fn new_p2tr<C: Verification>(
secp: &Secp256k1<C>,
internal_key: UntweakedPublicKey,
merkle_root: Option<TapNodeHash>,
) -> Self {
let (output_key, _) = internal_key.tap_tweak(secp, merkle_root);
// output key is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv1)
ScriptBuf::new_witness_program_unchecked(WitnessVersion::V1, output_key.serialize())
}
/// Generates P2TR for key spending path for a known [`TweakedPublicKey`].
pub fn new_p2tr_tweaked(output_key: TweakedPublicKey) -> Self {
// output key is 32 bytes long, so it's safe to use `new_witness_program_unchecked` (Segwitv1)
ScriptBuf::new_witness_program_unchecked(WitnessVersion::V1, output_key.serialize())
}
/// Generates P2WSH-type of scriptPubkey with a given [`WitnessProgram`].
pub fn new_witness_program(witness_program: &WitnessProgram) -> Self {
Builder::new()
.push_opcode(witness_program.version().into())
.push_slice(witness_program.program())
.into_script()
}
/// Generates P2WSH-type of scriptPubkey with a given [`WitnessVersion`] and the program bytes.
/// Does not do any checks on version or program length.
///
/// Convenience method used by `new_p2wpkh`, `new_p2wsh`, `new_p2tr`, and `new_p2tr_tweaked`.
pub(crate) fn new_witness_program_unchecked<T: AsRef<PushBytes>>(
version: WitnessVersion,
program: T,
) -> Self {
let program = program.as_ref();
debug_assert!(program.len() >= 2 && program.len() <= 40);
// In segwit v0, the program must be 20 or 32 bytes long.
debug_assert!(version != WitnessVersion::V0 || program.len() == 20 || program.len() == 32);
Builder::new().push_opcode(version.into()).push_slice(program).into_script()
}
/// Creates the script code used for spending a P2WPKH output.
///
/// The `scriptCode` is described in [BIP143].
///
/// [BIP143]: <https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki>
pub fn p2wpkh_script_code(wpkh: WPubkeyHash) -> ScriptBuf {
Builder::new()
.push_opcode(OP_DUP)
.push_opcode(OP_HASH160)
.push_slice(wpkh)
.push_opcode(OP_EQUALVERIFY)
.push_opcode(OP_CHECKSIG)
.into_script()
}
/// Generates OP_RETURN-type of scriptPubkey for the given data.
pub fn new_op_return<T: AsRef<PushBytes>>(data: T) -> Self {
Builder::new().push_opcode(OP_RETURN).push_slice(data).into_script()
}
/// Creates a [`ScriptBuf`] from a hex string.
pub fn from_hex(s: &str) -> Result<Self, hex::HexToBytesError> {
let v = Vec::from_hex(s)?;
Ok(ScriptBuf::from_bytes(v))
}
/// Converts byte vector into script.
///
/// This method doesn't (re)allocate.
pub fn from_bytes(bytes: Vec<u8>) -> Self { ScriptBuf(bytes) }
/// Converts the script into a byte vector.
///
/// This method doesn't (re)allocate.
pub fn into_bytes(self) -> Vec<u8> { self.0 }
/// Adds a single opcode to the script.
pub fn push_opcode(&mut self, data: Opcode) { self.0.push(data.to_u8()); }
/// Adds instructions to push some arbitrary data onto the stack.
pub fn push_slice<T: AsRef<PushBytes>>(&mut self, data: T) {
let data = data.as_ref();
self.reserve(Self::reserved_len_for_slice(data.len()));
self.push_slice_no_opt(data);
}
/// Pushes the slice without reserving
fn push_slice_no_opt(&mut self, data: &PushBytes) {
// Start with a PUSH opcode
match data.len() as u64 {
n if n < opcodes::Ordinary::OP_PUSHDATA1 as u64 => {
self.0.push(n as u8);
}
n if n < 0x100 => {
self.0.push(opcodes::Ordinary::OP_PUSHDATA1.to_u8());
self.0.push(n as u8);
}
n if n < 0x10000 => {
self.0.push(opcodes::Ordinary::OP_PUSHDATA2.to_u8());
self.0.push((n % 0x100) as u8);
self.0.push((n / 0x100) as u8);
}
n if n < 0x100000000 => {
self.0.push(opcodes::Ordinary::OP_PUSHDATA4.to_u8());
self.0.push((n % 0x100) as u8);
self.0.push(((n / 0x100) % 0x100) as u8);
self.0.push(((n / 0x10000) % 0x100) as u8);
self.0.push((n / 0x1000000) as u8);
}
_ => panic!("tried to put a 4bn+ sized object into a script!"),
}
// Then push the raw bytes
self.0.extend_from_slice(data.as_bytes());
}
/// Computes the sum of `len` and the length of an appropriate push opcode.
pub(in crate::blockdata::script) fn reserved_len_for_slice(len: usize) -> usize {
len + match len {
0..=0x4b => 1,
0x4c..=0xff => 2,
0x100..=0xffff => 3,
// we don't care about oversized, the other fn will panic anyway
_ => 5,
}
}
/// Add a single instruction to the script.
///
/// ## Panics
///
/// The method panics if the instruction is a data push with length greater or equal to
/// 0x100000000.
pub fn push_instruction(&mut self, instruction: Instruction<'_>) {
match instruction {
Instruction::Op(opcode) => self.push_opcode(opcode),
Instruction::PushBytes(bytes) => self.push_slice(bytes),
}
}
/// Like push_instruction, but avoids calling `reserve` to not re-check the length.
pub fn push_instruction_no_opt(&mut self, instruction: Instruction<'_>) {
match instruction {
Instruction::Op(opcode) => self.push_opcode(opcode),
Instruction::PushBytes(bytes) => self.push_slice_no_opt(bytes),
}
}
/// Adds an `OP_VERIFY` to the script or replaces the last opcode with VERIFY form.
///
/// Some opcodes such as `OP_CHECKSIG` have a verify variant that works as if `VERIFY` was
/// in the script right after. To save space this function appends `VERIFY` only if
/// the most-recently-added opcode *does not* have an alternate `VERIFY` form. If it does
/// the last opcode is replaced. E.g., `OP_CHECKSIG` will become `OP_CHECKSIGVERIFY`.
///
/// Note that existing `OP_*VERIFY` opcodes do not lead to the instruction being ignored
/// because `OP_VERIFY` consumes an item from the stack so ignoring them would change the
/// semantics.
///
/// This function needs to iterate over the script to find the last instruction. Prefer
/// `Builder` if you're creating the script from scratch or if you want to push `OP_VERIFY`
/// multiple times.
pub fn scan_and_push_verify(&mut self) { self.push_verify(self.last_opcode()); }
/// Adds an `OP_VERIFY` to the script or changes the most-recently-added opcode to `VERIFY`
/// alternative.
///
/// See the public fn [`Self::scan_and_push_verify`] to learn more.
pub(in crate::blockdata::script) fn push_verify(&mut self, last_opcode: Option<Opcode>) {
match opcode_to_verify(last_opcode) {
Some(opcode) => {
self.0.pop();
self.push_opcode(opcode);
}
None => self.push_opcode(OP_VERIFY),
}
}
/// Converts this `ScriptBuf` into a [boxed](Box) [`Script`].
///
/// This method reallocates if the capacity is greater than length of the script but should not
/// when they are equal. If you know beforehand that you need to create a script of exact size
/// use [`reserve_exact`](Self::reserve_exact) before adding data to the script so that the
/// reallocation can be avoided.
#[must_use = "`self` will be dropped if the result is not used"]
#[inline]
pub fn into_boxed_script(self) -> Box<Script> {
// Copied from PathBuf::into_boxed_path
let rw = Box::into_raw(self.0.into_boxed_slice()) as *mut Script;
unsafe { Box::from_raw(rw) }
}
}
impl<'a> core::iter::FromIterator<Instruction<'a>> for ScriptBuf {
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = Instruction<'a>>,
{
let mut script = ScriptBuf::new();
script.extend(iter);
script
}
}
impl<'a> Extend<Instruction<'a>> for ScriptBuf {
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = Instruction<'a>>,
{
let iter = iter.into_iter();
// Most of Bitcoin scripts have only a few opcodes, so we can avoid reallocations in many
// cases.
if iter.size_hint().1.map(|max| max < 6).unwrap_or(false) {
let mut iter = iter.fuse();
// `MaybeUninit` might be faster but we don't want to introduce more `unsafe` than
// required.
let mut head = [None; 5];
let mut total_size = 0;
for (head, instr) in head.iter_mut().zip(&mut iter) {
total_size += instr.script_serialized_len();
*head = Some(instr);
}
// Incorrect impl of `size_hint` breaks `Iterator` contract so we're free to panic.
assert!(
iter.next().is_none(),
"Buggy implementation of `Iterator` on {} returns invalid upper bound",
core::any::type_name::<T::IntoIter>()
);
self.reserve(total_size);
for instr in head.iter().cloned().flatten() {
self.push_instruction_no_opt(instr);
}
} else {
for instr in iter {
self.push_instruction(instr);
}
}
}
}