1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
// SPDX-License-Identifier: MIT

//! Decoding of bech32 encoded strings as specified by [BIP-173] and [BIP-350].
//!
//! You should only need to use this module directly if you want control over exactly what is
//! checked and when it is checked (correct bech32 characters, valid checksum, valid checksum for
//! specific checksum algorithm, etc). If you are parsing/validating modern (post BIP-350) bitcoin
//! segwit addresses consider using the higher crate level API.
//!
//! If you do find yourself using this module directly then consider using the most general type
//! that serves your purposes, each type can be created by parsing an address string to `new`. You
//! likely do not want to arbitrarily transition from one type to the next even though possible. And
//! be prepared to spend some time with the bips - you have been warned :)
//!
//! # Details
//!
//! A Bech32 string is at most 90 characters long and consists of:
//!
//! - The human-readable part, which is intended to convey the type of data, or anything else that
//!   is relevant to the reader. This part MUST contain 1 to 83 US-ASCII characters.
//! - The separator, which is always "1".
//! - The data part, which is at least 6 characters long and only consists of alphanumeric
//!   characters excluding "1", "b", "i", and "o".
//!
//! The types in this module heavily lean on the wording in BIP-173: *We first
//! describe the general checksummed base32 format called Bech32 and then define Segregated Witness
//! addresses using it.*
//!
//! - `UncheckedHrpstring`: Parses the general checksummed base32 format and provides checksum validation.
//! - `CheckedHrpstring`: Provides access to the data encoded by a general checksummed base32 string and segwit checks.
//! - `SegwitHrpstring`: Provides access to the data encoded by a segwit address.
//!
//! # Examples
//!
//! ```
//! use bech32::{Bech32, Bech32m, Fe32, Hrp};
//! use bech32::primitives::decode::{CheckedHrpstring, SegwitHrpstring, UncheckedHrpstring};
//! use bech32::segwit::VERSION_1;
//!
//! // An arbitrary HRP and a string of valid bech32 characters.
//! let s = "abcd143hj65vxw49rts6kcw35u6r6tgzguyr03vvveeewjqpn05efzq444444";
//! assert!(UncheckedHrpstring::new(s).is_ok());
//! // But it has an invalid checksum.
//! assert!(CheckedHrpstring::new::<Bech32>(s).is_err());
//! assert!(CheckedHrpstring::new::<Bech32m>(s).is_err());
//! assert!(SegwitHrpstring::new(s).is_err());
//!
//! // An arbitrary HRP, a string of valid bech32 characters, and a valid bech32 checksum.
//! let s = "abcd14g08d6qejxtdg4y5r3zarvary0c5xw7kxugcx9";
//! assert!(UncheckedHrpstring::new(s).is_ok());
//! assert!(CheckedHrpstring::new::<Bech32>(s).is_ok());
//! // But not a valid segwit address.
//! assert!(SegwitHrpstring::new(s).is_err());
//! // And not a valid bech32m checksum.
//! assert!(CheckedHrpstring::new::<Bech32m>(s).is_err());
//!
//! // A valid Bitcoin taproot address.
//! let s = "bc1pdp43hj65vxw49rts6kcw35u6r6tgzguyr03vvveeewjqpn05efzq7un9w0";
//! assert!(UncheckedHrpstring::new(s).is_ok());
//! assert!(CheckedHrpstring::new::<Bech32m>(s).is_ok());
//! assert!(SegwitHrpstring::new(s).is_ok());
//! // But not a valid segwit v0 checksum.
//! assert!(CheckedHrpstring::new::<Bech32>(s).is_err());
//!
//! // Get the HRP, witness version, and encoded data.
//! let address = "bc1pdp43hj65vxw49rts6kcw35u6r6tgzguyr03vvveeewjqpn05efzq7un9w0";
//! let segwit = SegwitHrpstring::new(address).expect("valid segwit address");
//! let _encoded_data = segwit.byte_iter();
//! assert_eq!(segwit.hrp(), Hrp::parse("bc").unwrap());
//! assert_eq!(segwit.witness_version(), VERSION_1);
//! ```
//!
//! [BIP-173]: <https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki>
//! [BIP-350]: <https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki>

use core::{fmt, iter, slice, str};

use crate::error::write_err;
use crate::primitives::checksum::{self, Checksum};
use crate::primitives::gf32::Fe32;
use crate::primitives::hrp::{self, Hrp};
use crate::primitives::iter::{Fe32IterExt, FesToBytes};
use crate::primitives::segwit::{self, WitnessLengthError, VERSION_0};
use crate::{Bech32, Bech32m};

/// Separator between the hrp and payload (as defined by BIP-173).
const SEP: char = '1';

/// An HRP string that has been parsed but not yet had the checksum checked.
///
/// Parsing an HRP string only checks validity of the characters, it does not validate the
/// checksum in any way.
///
/// Unless you are attempting to validate a string with multiple checksums then you likely do not
/// want to use this type directly, instead use [`CheckedHrpstring::new(s)`].
///
/// # Examples
///
/// ```
/// use bech32::{Bech32, Bech32m, primitives::decode::UncheckedHrpstring};
///
/// let addr = "BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4";
/// let unchecked = UncheckedHrpstring::new(addr).expect("valid bech32 character encoded string");
/// if unchecked.has_valid_checksum::<Bech32>() {
///     // Remove the checksum and do something with the data.
///     let checked = unchecked.remove_checksum::<Bech32>();
///     let _ = checked.byte_iter();
/// } else if unchecked.has_valid_checksum::<Bech32m>() {
///     // Remove the checksum and do something with the data as above.
/// } else {
///     // Checksum is not valid for either the bech32 or bech32 checksum algorithms.
/// }
/// ```
#[derive(Debug)]
pub struct UncheckedHrpstring<'s> {
    /// The human-readable part, guaranteed to be lowercase ASCII characters.
    hrp: Hrp,
    /// This is ASCII byte values of the parsed string, guaranteed to be valid bech32 characters.
    ///
    /// Contains the checksum if one was present in the parsed string.
    data: &'s [u8],
}

impl<'s> UncheckedHrpstring<'s> {
    /// Parses an bech32 encode string and constructs a [`UncheckedHrpstring`] object.
    ///
    /// Checks for valid ASCII values, does not validate the checksum.
    #[inline]
    pub fn new(s: &'s str) -> Result<Self, UncheckedHrpstringError> {
        let sep_pos = check_characters(s)?;
        let (hrp, data) = s.split_at(sep_pos);

        let ret = UncheckedHrpstring {
            hrp: Hrp::parse(hrp)?,
            data: data[1..].as_bytes(), // Skip the separator.
        };

        Ok(ret)
    }

    /// Returns the human-readable part.
    #[inline]
    pub fn hrp(&self) -> Hrp { self.hrp }

    /// Validates that data has a valid checksum for the `Ck` algorithm and returns a [`CheckedHrpstring`].
    #[inline]
    pub fn validate_and_remove_checksum<Ck: Checksum>(
        self,
    ) -> Result<CheckedHrpstring<'s>, ChecksumError> {
        self.validate_checksum::<Ck>()?;
        Ok(self.remove_checksum::<Ck>())
    }

    /// Validates that data has a valid checksum for the `Ck` algorithm (this may mean an empty
    /// checksum if `NoChecksum` is used).
    ///
    /// This is useful if you do not know which checksum algorithm was used and wish to validate
    /// against multiple algorithms consecutively. If this function returns `true` then call
    /// `remove_checksum` to get a [`CheckedHrpstring`].
    #[inline]
    pub fn has_valid_checksum<Ck: Checksum>(&self) -> bool {
        self.validate_checksum::<Ck>().is_ok()
    }

    /// Validates that data has a valid checksum for the `Ck` algorithm (this may mean an empty
    /// checksum if `NoChecksum` is used).
    #[inline]
    pub fn validate_checksum<Ck: Checksum>(&self) -> Result<(), ChecksumError> {
        use ChecksumError::*;

        if Ck::CHECKSUM_LENGTH == 0 {
            // Called with NoChecksum
            return Ok(());
        }

        if self.data.len() < Ck::CHECKSUM_LENGTH {
            return Err(InvalidChecksumLength);
        }

        let mut checksum_eng = checksum::Engine::<Ck>::new();
        checksum_eng.input_hrp(&self.hrp());

        // Unwrap ok since we checked all characters in our constructor.
        for fe in self.data.iter().map(|&b| Fe32::from_char_unchecked(b)) {
            checksum_eng.input_fe(fe);
        }

        if checksum_eng.residue() != &Ck::TARGET_RESIDUE {
            return Err(InvalidChecksum);
        }

        Ok(())
    }

    /// Removes the checksum for the `Ck` algorithm and returns an [`CheckedHrpstring`].
    ///
    /// Data must be valid (ie, first call `has_valid_checksum` or `validate_checksum()`). This
    /// function is typically paired with `has_valid_checksum` when validating against multiple
    /// checksum algorithms consecutively.
    ///
    /// # Panics
    ///
    /// May panic if data is not valid.
    #[inline]
    pub fn remove_checksum<Ck: Checksum>(self) -> CheckedHrpstring<'s> {
        let data_len = self.data.len() - Ck::CHECKSUM_LENGTH;

        CheckedHrpstring { hrp: self.hrp(), data: &self.data[..data_len] }
    }
}

/// An HRP string that has been parsed and had the checksum validated.
///
/// This type does not treat the first byte of the data in any special way i.e., as the witness
/// version byte. If you are parsing Bitcoin segwit addresses you likely want to use [`SegwitHrpstring`].
///
/// > We first describe the general checksummed base32 format called Bech32 and then
/// > define Segregated Witness addresses using it.
///
/// This type abstracts over the general checksummed base32 format called Bech32.
///
/// # Examples
///
/// ```
/// use bech32::{Bech32m, primitives::decode::CheckedHrpstring};
///
/// // Parse a general checksummed bech32 encoded string.
/// let s = "abcd14g08d6qejxtdg4y5r3zarvary0c5xw7knqc5r8";
/// let checked = CheckedHrpstring::new::<Bech32m>(s)
///       .expect("valid bech32 string with a valid checksum according to the bech32m algorithm");
///
/// // Do something with the encoded data.
/// let _ = checked.byte_iter();
/// ```
#[derive(Debug)]
pub struct CheckedHrpstring<'s> {
    /// The human-readable part, guaranteed to be lowercase ASCII characters.
    hrp: Hrp,
    /// This is ASCII byte values of the parsed string, guaranteed to be valid bech32 characters,
    /// with the checksum removed.
    data: &'s [u8],
}

impl<'s> CheckedHrpstring<'s> {
    /// Parses and validates an HRP string, without treating the first data character specially.
    ///
    /// If you are validating the checksum multiple times consider using [`UncheckedHrpstring`].
    ///
    /// This is equivalent to `UncheckedHrpstring::new().validate_and_remove_checksum::<CK>()`.
    #[inline]
    pub fn new<Ck: Checksum>(s: &'s str) -> Result<Self, CheckedHrpstringError> {
        let unchecked = UncheckedHrpstring::new(s)?;
        let checked = unchecked.validate_and_remove_checksum::<Ck>()?;
        Ok(checked)
    }

    /// Returns the human-readable part.
    #[inline]
    pub fn hrp(&self) -> Hrp { self.hrp }

    /// Returns an iterator that yields the data part of the parsed bech32 encoded string.
    ///
    /// Converts the ASCII bytes representing field elements to the respective field elements, then
    /// converts the stream of field elements to a stream of bytes.
    #[inline]
    pub fn byte_iter(&self) -> ByteIter {
        ByteIter { iter: AsciiToFe32Iter { iter: self.data.iter().copied() }.fes_to_bytes() }
    }

    /// Converts this type to a [`SegwitHrpstring`] after validating the witness and HRP.
    #[inline]
    pub fn validate_segwit(mut self) -> Result<SegwitHrpstring<'s>, SegwitHrpstringError> {
        if self.data.is_empty() {
            return Err(SegwitHrpstringError::MissingWitnessVersion);
        }
        // Unwrap ok since check_characters checked the bech32-ness of this char.
        let witness_version = Fe32::from_char(self.data[0].into()).unwrap();
        self.data = &self.data[1..]; // Remove the witness version byte from data.

        self.validate_padding()?;
        self.validate_witness_program_length(witness_version)?;

        Ok(SegwitHrpstring { hrp: self.hrp(), witness_version, data: self.data })
    }

    /// Validates the segwit padding rules.
    ///
    /// Must be called after the witness version byte is removed from the data.
    ///
    /// From BIP-173:
    /// > Re-arrange those bits into groups of 8 bits. Any incomplete group at the
    /// > end MUST be 4 bits or less, MUST be all zeroes, and is discarded.
    fn validate_padding(&self) -> Result<(), PaddingError> {
        if self.data.is_empty() {
            return Ok(()); // Empty data implies correct padding.
        }

        let fe_iter = AsciiToFe32Iter { iter: self.data.iter().copied() };
        let padding_len = fe_iter.len() * 5 % 8;

        if padding_len > 4 {
            return Err(PaddingError::TooMuch)?;
        }

        let last_fe = fe_iter.last().expect("checked above");
        let last_byte = last_fe.0;

        let padding_contains_non_zero_bits = match padding_len {
            0 => false,
            1 => last_byte & 0b0001 > 0,
            2 => last_byte & 0b0011 > 0,
            3 => last_byte & 0b0111 > 0,
            4 => last_byte & 0b1111 > 0,
            _ => unreachable!("checked above"),
        };
        if padding_contains_non_zero_bits {
            Err(PaddingError::NonZero)
        } else {
            Ok(())
        }
    }

    /// Validates the segwit witness length rules.
    ///
    /// Must be called after the witness version byte is removed from the data.
    fn validate_witness_program_length(
        &self,
        witness_version: Fe32,
    ) -> Result<(), WitnessLengthError> {
        segwit::validate_witness_program_length(self.byte_iter().len(), witness_version)
    }
}

/// An HRP string that has been parsed, had the checksum validated, had the witness version
/// validated, had the witness data length checked, and the had witness version and checksum
/// removed.
///
/// # Examples
///
/// ```
/// use bech32::primitives::decode::SegwitHrpstring;
///
/// // Parse a segwit V0 address.
/// let address = "bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq";
/// let segwit = SegwitHrpstring::new(address).expect("valid segwit address");
///
/// // Do something with the encoded data.
/// let _ = segwit.byte_iter();
/// ```
#[derive(Debug)]
pub struct SegwitHrpstring<'s> {
    /// The human-readable part, valid for segwit addresses.
    hrp: Hrp,
    /// The first byte of the parsed data.
    witness_version: Fe32,
    /// This is ASCII byte values of the parsed string, guaranteed to be valid bech32 characters,
    /// with the witness version and checksum removed.
    data: &'s [u8],
}

impl<'s> SegwitHrpstring<'s> {
    /// Parses an HRP string, treating the first data character as a witness version.
    ///
    /// The version byte does not appear in the extracted binary data, but is covered by the
    /// checksum. It can be accessed with [`Self::witness_version`].
    ///
    /// NOTE: We do not enforce any restrictions on the HRP, use [`SegwitHrpstring::has_valid_hrp`]
    /// to get strict BIP conformance (also [`Hrp::is_valid_on_mainnet`] and friends).
    #[inline]
    pub fn new(s: &'s str) -> Result<Self, SegwitHrpstringError> {
        let unchecked = UncheckedHrpstring::new(s)?;

        if unchecked.data.is_empty() {
            return Err(SegwitHrpstringError::MissingWitnessVersion);
        }

        // Unwrap ok since check_characters (in `Self::new`) checked the bech32-ness of this char.
        let witness_version = Fe32::from_char(unchecked.data[0].into()).unwrap();
        if witness_version.to_u8() > 16 {
            return Err(SegwitHrpstringError::InvalidWitnessVersion(witness_version));
        }

        let checked: CheckedHrpstring<'s> = match witness_version {
            VERSION_0 => unchecked.validate_and_remove_checksum::<Bech32>()?,
            _ => unchecked.validate_and_remove_checksum::<Bech32m>()?,
        };

        checked.validate_segwit()
    }

    /// Parses an HRP string, treating the first data character as a witness version.
    ///
    /// ## WARNING
    ///
    /// You almost certainly do not want to use this function.
    ///
    /// It is provided for backwards comparability to parse addresses that have an non-zero witness
    /// version because [BIP-173] explicitly allows using the bech32 checksum with any witness
    /// version however [BIP-350] specifies all witness version > 0 now MUST use bech32m.
    ///
    /// [BIP-173]: https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
    /// [BIP-350]: https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki
    #[inline]
    pub fn new_bech32(s: &'s str) -> Result<Self, SegwitHrpstringError> {
        let unchecked = UncheckedHrpstring::new(s)?;

        // Unwrap ok since check_characters (in `Self::new`) checked the bech32-ness of this char.
        let witness_version = Fe32::from_char(unchecked.data[0].into()).unwrap();
        if witness_version.to_u8() > 16 {
            return Err(SegwitHrpstringError::InvalidWitnessVersion(witness_version));
        }

        let checked = unchecked.validate_and_remove_checksum::<Bech32>()?;
        checked.validate_segwit()
    }

    /// Returns `true` if the HRP is "bc" or "tb".
    ///
    /// BIP-173 requires that the HRP is "bc" or "tb" but software in the Bitcoin ecosystem uses
    /// other HRPs, specifically "bcrt" for regtest addresses. We provide this function in order to
    /// be BIP-173 compliant but their are no restrictions on the HRP of [`SegwitHrpstring`].
    #[inline]
    pub fn has_valid_hrp(&self) -> bool { self.hrp().is_valid_segwit() }

    /// Returns the human-readable part.
    #[inline]
    pub fn hrp(&self) -> Hrp { self.hrp }

    /// Returns the witness version.
    #[inline]
    pub fn witness_version(&self) -> Fe32 { self.witness_version }

    /// Returns an iterator that yields the data part, excluding the witness version, of the parsed
    /// bech32 encoded string.
    ///
    /// Converts the ASCII bytes representing field elements to the respective field elements, then
    /// converts the stream of field elements to a stream of bytes.
    ///
    /// Use `self.witness_version()` to get the witness version.
    #[inline]
    pub fn byte_iter(&self) -> ByteIter {
        ByteIter { iter: AsciiToFe32Iter { iter: self.data.iter().copied() }.fes_to_bytes() }
    }
}

/// Checks whether a given HRP string has data characters in the bech32 alphabet (incl. checksum
/// characters), and that the whole string has consistent casing (hrp, data, and checksum).
///
/// # Returns
///
/// The byte-index into the string where the '1' separator occurs, or an error if it does not.
fn check_characters(s: &str) -> Result<usize, CharError> {
    use CharError::*;

    let mut has_upper = false;
    let mut has_lower = false;
    let mut req_bech32 = true;
    let mut sep_pos = None;
    for (n, ch) in s.char_indices().rev() {
        if ch == SEP && sep_pos.is_none() {
            req_bech32 = false;
            sep_pos = Some(n);
        }
        if req_bech32 {
            Fe32::from_char(ch).map_err(|_| InvalidChar(ch))?;
        }
        if ch.is_ascii_uppercase() {
            has_upper = true;
        } else if ch.is_ascii_lowercase() {
            has_lower = true;
        }
    }
    if has_upper && has_lower {
        Err(MixedCase)
    } else if let Some(pos) = sep_pos {
        Ok(pos)
    } else {
        Err(MissingSeparator)
    }
}

/// An iterator over a parsed HRP string data as bytes.
pub struct ByteIter<'s> {
    iter: FesToBytes<AsciiToFe32Iter<iter::Copied<slice::Iter<'s, u8>>>>,
}

impl<'s> Iterator for ByteIter<'s> {
    type Item = u8;
    #[inline]
    fn next(&mut self) -> Option<u8> { self.iter.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}

impl<'s> ExactSizeIterator for ByteIter<'s> {
    #[inline]
    fn len(&self) -> usize { self.iter.len() }
}

/// An iterator over a parsed HRP string data as field elements.
pub struct Fe32Iter<'s> {
    iter: AsciiToFe32Iter<iter::Copied<slice::Iter<'s, u8>>>,
}

impl<'s> Iterator for Fe32Iter<'s> {
    type Item = Fe32;
    #[inline]
    fn next(&mut self) -> Option<Fe32> { self.iter.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}

/// Helper iterator adaptor that maps an iterator of valid bech32 character ASCII bytes to an
/// iterator of field elements.
///
/// # Panics
///
/// If any `u8` in the input iterator is out of range for an [`Fe32`]. Should only be used on data
/// that has already been checked for validity (eg, by using `check_characters`).
struct AsciiToFe32Iter<I: Iterator<Item = u8>> {
    iter: I,
}

impl<I> Iterator for AsciiToFe32Iter<I>
where
    I: Iterator<Item = u8>,
{
    type Item = Fe32;
    #[inline]
    fn next(&mut self) -> Option<Fe32> { self.iter.next().map(Fe32::from_char_unchecked) }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // Each ASCII character is an fe32 so iterators are the same size.
        self.iter.size_hint()
    }
}

impl<I> ExactSizeIterator for AsciiToFe32Iter<I>
where
    I: Iterator<Item = u8> + ExactSizeIterator,
{
    #[inline]
    fn len(&self) -> usize { self.iter.len() }
}

/// An error while constructing a [`SegwitHrpstring`] type.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum SegwitHrpstringError {
    /// Error while parsing the encoded address string.
    Unchecked(UncheckedHrpstringError),
    /// The witness version byte is missing.
    MissingWitnessVersion,
    /// Invalid witness version (must be 0-16 inclusive).
    InvalidWitnessVersion(Fe32),
    /// Invalid padding on the witness data.
    Padding(PaddingError),
    /// Invalid witness length.
    WitnessLength(WitnessLengthError),
    /// Invalid checksum.
    Checksum(ChecksumError),
}

impl fmt::Display for SegwitHrpstringError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use SegwitHrpstringError::*;

        match *self {
            Unchecked(ref e) => write_err!(f, "parsing unchecked hrpstring failed"; e),
            MissingWitnessVersion => write!(f, "the witness version byte is missing"),
            InvalidWitnessVersion(fe) => write!(f, "invalid segwit witness version: {}", fe),
            Padding(ref e) => write_err!(f, "invalid padding on the witness data"; e),
            WitnessLength(ref e) => write_err!(f, "invalid witness length"; e),
            Checksum(ref e) => write_err!(f, "invalid checksum"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for SegwitHrpstringError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use SegwitHrpstringError::*;

        match *self {
            Unchecked(ref e) => Some(e),
            Padding(ref e) => Some(e),
            WitnessLength(ref e) => Some(e),
            Checksum(ref e) => Some(e),
            MissingWitnessVersion | InvalidWitnessVersion(_) => None,
        }
    }
}

impl From<UncheckedHrpstringError> for SegwitHrpstringError {
    #[inline]
    fn from(e: UncheckedHrpstringError) -> Self { Self::Unchecked(e) }
}

impl From<WitnessLengthError> for SegwitHrpstringError {
    #[inline]
    fn from(e: WitnessLengthError) -> Self { Self::WitnessLength(e) }
}

impl From<PaddingError> for SegwitHrpstringError {
    #[inline]
    fn from(e: PaddingError) -> Self { Self::Padding(e) }
}

impl From<ChecksumError> for SegwitHrpstringError {
    #[inline]
    fn from(e: ChecksumError) -> Self { Self::Checksum(e) }
}

/// An error while constructing a [`CheckedHrpstring`] type.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum CheckedHrpstringError {
    /// Error while parsing the encoded address string.
    Parse(UncheckedHrpstringError),
    /// Invalid checksum.
    Checksum(ChecksumError),
}

impl fmt::Display for CheckedHrpstringError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use CheckedHrpstringError::*;

        match *self {
            Parse(ref e) => write_err!(f, "parse failed"; e),
            Checksum(ref e) => write_err!(f, "invalid checksum"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for CheckedHrpstringError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use CheckedHrpstringError::*;

        match *self {
            Parse(ref e) => Some(e),
            Checksum(ref e) => Some(e),
        }
    }
}

impl From<UncheckedHrpstringError> for CheckedHrpstringError {
    #[inline]
    fn from(e: UncheckedHrpstringError) -> Self { Self::Parse(e) }
}

impl From<ChecksumError> for CheckedHrpstringError {
    #[inline]
    fn from(e: ChecksumError) -> Self { Self::Checksum(e) }
}

/// Errors when parsing a bech32 encoded string.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum UncheckedHrpstringError {
    /// An error with the characters of the input string.
    Char(CharError),
    /// The human-readable part is invalid.
    Hrp(hrp::Error),
}

impl fmt::Display for UncheckedHrpstringError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use UncheckedHrpstringError::*;

        match *self {
            Char(ref e) => write_err!(f, "character error"; e),
            Hrp(ref e) => write_err!(f, "invalid human-readable part"; e),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for UncheckedHrpstringError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use UncheckedHrpstringError::*;

        match *self {
            Char(ref e) => Some(e),
            Hrp(ref e) => Some(e),
        }
    }
}

impl From<CharError> for UncheckedHrpstringError {
    #[inline]
    fn from(e: CharError) -> Self { Self::Char(e) }
}

impl From<hrp::Error> for UncheckedHrpstringError {
    #[inline]
    fn from(e: hrp::Error) -> Self { Self::Hrp(e) }
}

/// Character errors in a bech32 encoded string.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum CharError {
    /// String does not contain the separator character.
    MissingSeparator,
    /// No characters after the separator.
    NothingAfterSeparator,
    /// The checksum does not match the rest of the data.
    InvalidChecksum,
    /// The checksum is not a valid length.
    InvalidChecksumLength,
    /// Some part of the string contains an invalid character.
    InvalidChar(char),
    /// The whole string must be of one case.
    MixedCase,
}

impl fmt::Display for CharError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use CharError::*;

        match *self {
            MissingSeparator => write!(f, "missing human-readable separator, \"{}\"", SEP),
            NothingAfterSeparator => write!(f, "invalid data - no characters after the separator"),
            InvalidChecksum => write!(f, "invalid checksum"),
            InvalidChecksumLength => write!(f, "the checksum is not a valid length"),
            InvalidChar(n) => write!(f, "invalid character (code={})", n),
            MixedCase => write!(f, "mixed-case strings not allowed"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for CharError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use CharError::*;

        match *self {
            MissingSeparator
            | NothingAfterSeparator
            | InvalidChecksum
            | InvalidChecksumLength
            | InvalidChar(_)
            | MixedCase => None,
        }
    }
}

/// Errors in the checksum of a bech32 encoded string.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum ChecksumError {
    /// The checksum does not match the rest of the data.
    InvalidChecksum,
    /// The checksum is not a valid length.
    InvalidChecksumLength,
}

impl fmt::Display for ChecksumError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use ChecksumError::*;

        match *self {
            InvalidChecksum => write!(f, "invalid checksum"),
            InvalidChecksumLength => write!(f, "the checksum is not a valid length"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for ChecksumError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use ChecksumError::*;

        match *self {
            InvalidChecksum | InvalidChecksumLength => None,
        }
    }
}

/// Error validating the padding bits on the witness data.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum PaddingError {
    /// The data payload has too many bits of padding.
    TooMuch,
    /// The data payload is padded with non-zero bits.
    NonZero,
}

impl fmt::Display for PaddingError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use PaddingError::*;

        match *self {
            TooMuch => write!(f, "the data payload has too many bits of padding"),
            NonZero => write!(f, "the data payload is padded with non-zero bits"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for PaddingError {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        use PaddingError::*;

        match *self {
            TooMuch | NonZero => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn bip_173_invalid_parsing_fails() {
        use UncheckedHrpstringError::*;

        let invalid: Vec<(&str, UncheckedHrpstringError)> = vec!(
            ("\u{20}1nwldj5",
             // TODO: Rust >= 1.59.0 use Hrp(hrp::Error::InvalidAsciiByte('\u{20}'.try_into().unwrap()))),
             Hrp(hrp::Error::InvalidAsciiByte(32))),
            ("\u{7F}1axkwrx",
             Hrp(hrp::Error::InvalidAsciiByte(127))),
            ("\u{80}1eym55h",
             Hrp(hrp::Error::NonAsciiChar('\u{80}'))),
            ("an84characterslonghumanreadablepartthatcontainsthetheexcludedcharactersbioandnumber11d6pts4",
             Hrp(hrp::Error::TooLong(84))),
            ("pzry9x0s0muk",
             Char(CharError::MissingSeparator)),
            ("1pzry9x0s0muk",
             Hrp(hrp::Error::Empty)),
            ("x1b4n0q5v",
             Char(CharError::InvalidChar('b'))),
            // "li1dgmt3" in separate test because error is a checksum error.
            ("de1lg7wt\u{ff}",
             Char(CharError::InvalidChar('\u{ff}'))),
            // "A1G7SGD8" in separate test because error is a checksum error.
            ("10a06t8",
             Hrp(hrp::Error::Empty)),
            ("1qzzfhee",
             Hrp(hrp::Error::Empty)),
        );

        for (s, want) in invalid {
            let got = UncheckedHrpstring::new(s).unwrap_err();
            assert_eq!(got, want);
        }
    }

    #[test]
    fn bip_173_invalid_parsing_fails_invalid_checksum() {
        use ChecksumError::*;

        let err = UncheckedHrpstring::new("li1dgmt3")
            .expect("string parses correctly")
            .validate_checksum::<Bech32>()
            .unwrap_err();
        assert_eq!(err, InvalidChecksumLength);

        let err = UncheckedHrpstring::new("A1G7SGD8")
            .expect("string parses correctly")
            .validate_checksum::<Bech32>()
            .unwrap_err();
        assert_eq!(err, InvalidChecksum);
    }

    #[test]
    fn bip_350_invalid_parsing_fails() {
        use UncheckedHrpstringError::*;

        let invalid: Vec<(&str, UncheckedHrpstringError)> = vec!(
            ("\u{20}1xj0phk",
             // TODO: Rust >= 1.59.0 use Hrp(hrp::Error::InvalidAsciiByte('\u{20}'.try_into().unwrap()))),
             Hrp(hrp::Error::InvalidAsciiByte(32))),
            ("\u{7F}1g6xzxy",
             Hrp(hrp::Error::InvalidAsciiByte(127))),
            ("\u{80}1g6xzxy",
             Hrp(hrp::Error::NonAsciiChar('\u{80}'))),
            ("an84characterslonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio1569pvx",
             Hrp(hrp::Error::TooLong(84))),
            ("qyrz8wqd2c9m",
             Char(CharError::MissingSeparator)),
            ("1qyrz8wqd2c9m",
             Hrp(hrp::Error::Empty)),
            ("y1b0jsk6g",
             Char(CharError::InvalidChar('b'))),
            ("lt1igcx5c0",
             Char(CharError::InvalidChar('i'))),
            // "in1muywd" in separate test because error is a checksum error.
            ("mm1crxm3i",
             Char(CharError::InvalidChar('i'))),
            ("au1s5cgom",
             Char(CharError::InvalidChar('o'))),
            // "M1VUXWEZ" in separate test because error is a checksum error.
            ("16plkw9",
             Hrp(hrp::Error::Empty)),
            ("1p2gdwpf",
             Hrp(hrp::Error::Empty)),

        );

        for (s, want) in invalid {
            let got = UncheckedHrpstring::new(s).unwrap_err();
            assert_eq!(got, want);
        }
    }

    #[test]
    fn bip_350_invalid_because_of_invalid_checksum() {
        use ChecksumError::*;

        // Note the "bc1p2" test case is not from the bip test vectors.
        let invalid: Vec<&str> = vec!["in1muywd", "bc1p2"];

        for s in invalid {
            let err =
                UncheckedHrpstring::new(s).unwrap().validate_checksum::<Bech32m>().unwrap_err();
            assert_eq!(err, InvalidChecksumLength);
        }

        let err = UncheckedHrpstring::new("M1VUXWEZ")
            .unwrap()
            .validate_checksum::<Bech32m>()
            .unwrap_err();
        assert_eq!(err, InvalidChecksum);
    }

    #[test]
    fn check_hrp_uppercase_returns_lower() {
        let addr = "BC1QW508D6QEJXTDG4Y5R3ZARVARY0C5XW7KV8F3T4";
        let unchecked = UncheckedHrpstring::new(addr).expect("failed to parse address");
        assert_eq!(unchecked.hrp(), Hrp::parse_unchecked("bc"));
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn check_hrp_max_length() {
        let hrps =
            "an83characterlonghumanreadablepartthatcontainsthenumber1andtheexcludedcharactersbio";

        let hrp = Hrp::parse_unchecked(hrps);
        let s = crate::encode::<Bech32>(hrp, &[]).expect("failed to encode empty buffer");

        let unchecked = UncheckedHrpstring::new(&s).expect("failed to parse address");
        assert_eq!(unchecked.hrp(), hrp);
    }

    #[test]
    fn mainnet_valid_addresses() {
        let addresses = vec![
            "bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq",
            "23451QAR0SRRR7XFKVY5L643LYDNW9RE59GTZZLKULZK",
        ];
        for valid in addresses {
            assert!(CheckedHrpstring::new::<Bech32>(valid).is_ok())
        }
    }

    macro_rules! check_invalid_segwit_addresses {
        ($($test_name:ident, $reason:literal, $address:literal);* $(;)?) => {
            $(
                #[test]
                fn $test_name() {
                    let res = SegwitHrpstring::new($address);
                    if res.is_ok() {
                        panic!("{} sting should not be valid: {}", $address, $reason);
                    }
                }
            )*
        }
    }
    check_invalid_segwit_addresses! {
        invalid_segwit_address_0, "missing hrp", "1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq";
        invalid_segwit_address_1, "missing data-checksum", "91111";
        invalid_segwit_address_2, "invalid witness version", "bc14r0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq";
        invalid_segwit_address_3, "invalid checksum length", "bc1q5mdq";
        invalid_segwit_address_4, "missing data", "bc1qwf5mdq";
        invalid_segwit_address_5, "invalid program length", "bc14r0srrr7xfkvy5l643lydnw9rewf5mdq";
    }
}